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Appendix 1: Formal Language Definitions

Portions of this material are adapted from (Gurari 1989).
A Type 0 grammar G is defined as a quadruple <A , Σ , P , S >, where

A is an alphabet, whose elements are called non-terminal symbols. A* denotes
the set of possible words formed from concatenating these symbols.

∑  is an alphabet disjoint from N, whose elements are called terminal symbols.
P is a relation of finite cardinality on (A)*, whose elements are called production

rules.   Moreover, each production rule (α ,β) in P, denoted α→β, must have at least one
non-terminal symbol in A . In each such production rule, α is said to be the left-hand side
of the production rule, and β is said to be the right-hand side of the production rule.

S is a symbol in A called the start , or sentence , symbol.

 A grammar G = < N, Σ, P, S > is said to be a right-linear grammar if each of its
production rules is either of the form α→  xβ or of the form α  → x, where α  and β are
non-terminal symbols in A and x is a string of terminal symbols in Σ*.

The grammar is said to be a left-linear grammar if each of its production rules is
either of the form α→βx or of the form A→ x, where α and β are nonterminal symbols in
A and x is a string of terminal symbols in Σ*.

The grammar is said to be a regular grammar if it is either a right-linear grammar
or a left-linear grammar.  A language is a regular language if it is generated by a regular
grammar.

Such a Type 0 grammar G = <A, Σ, P, S> is said to be context-free if each of its
production rules has exactly one non-terminal symbol on its left hand side, that is, if each
of its production rules is of the form A->alpha .

The concept of a grammar can be extended to a stochastic grammar.  The set P of
productions can be associated one to one with an set π of probabilities on each
production.  The resulting system <A, Σ, P, π, S>  is a stochastic grammar.  The set of
productions is a stochastic language.  A state transition graph consisting of nodes for each
element in A can be defined, with labeled arcs giving the probabilities of emitting a new
token; this graph specifies a Markov process which generates strings in the stochastic
language L.
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Appendix 2: Discrete Markov Chains

In this appendix basic definitions related to Markov chains are presented
following the treatment in the Sochastic Processes text of Lawler (Lawler 1995).  I
occasionally interject comments drawing connections to dynamical systems.  While
Markov chains share certain concepts with dynamics systems such as periodicities,
transient states, the basic dichotomy between deterministic and probabilistic systems
remains.  By considering coarse grained partitions of the dynamical phase space(as is also
performed for symbolic dynamics) as the states in a Markov chain, one can convert from
the deterministic to the stochastic mode of analysis.

STOCHASTIC AND MARKOV PROCESSES

A stochastic process is a collection of random variables Xt  indexed by time.
When time is a subset of the nonnegative integers {0,1,2 ...} the process is called discrete
time.  The random variables take values in a state space; this may be discrete (a finite or
countably infinite set) or continuous.  A Markov process is a stochastic process with the
restriction that the change at time t is determined by the value of the process (i.e. the
value of the state space scalar or vector in Rd) at time t, and not by values at times before
t.

MARKOV CHAINS

A time homogeneous Markov chain is a Markov process described by a initial
probability distribution and a transition probability matrix P, where the elements in the
matrix Pij are independent of time.  The matrix P must be a stochastic matrix, satisfying
the conditions:
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The n-step transition probabilities pn(i,j) are given by Pn.
An absorbing state is a state which leads to itself with probability one.  This is

equivalent to a fixed point attractor in a dynamical system.
A Markov chain is irreducible if all states communicate, i.e. there is a path

between the two states in the transition matrix.  Otherwise, the state space is partitioned
into disjoint sets called communication classes.  These may be transient or recurrent,
inheriting properties from their constituent states.  A transient state will leave the state
with probability 1 (when the system is captured by an absorbing state).

The partitioning of states into transients and absorbing states corresponds to the
partitioning of contracting dynamical systems into attractors and (basin) transients.  For
expanding (chaotic) dynamical systems, there may be forbidden regions of phase space
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on the attractor, which nevertheless could be given as an initial condition or reached by a
perturbation.

A recurrent Markov chain is one for which each state is visited infinitely many
times.  In contrast, a transient chain is one for which each state is visited a finite number
of times.
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Appendix 3: Signal Analysis

Autocorrelation
Autocorrelation emphasizes periodic components of a time series by comparing

values separated by a regular time interval (lag).  Each sample of the time series is
multiplied by the value shifted in time by a fixed lag; the sum of these products is the
autocorrelation function for a particular lag time.  The   autocorrelogram is generated by

1. Removing the mean from the signal
2. Normalizing by signal power
3. Plotting lag time (x axis) vs. the normalized correlation coefficient.

A similar process, cross-correlation, is used to compare two time series.
Autocorrelation can, of course, be viewed as a special case of cross correlation.
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where x[n] and y[n] are values of time series x and y at time n, k is the lag of y[n] with
respect to x[n], and N is the number of samples in series  or window in which the
function is computed.

Let N be the number of sampled points in two  signals  x and y.
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where FFT*  is the complex conjugate of FFT(x) (e.g. the negated imaginary part
of FFT(x)).
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 The coherence function requires an average of two or more measurements of the
signals under analysis.  For a single measurement, it would register unity at all
frequencies.  To average a complex quantity such as the cross power spectrum Sxy (f), sum
it in the complex form, divide by the number of averaging trials,  then convert to
magnitude and phase with rectangular to polar conversion..  The auto power spectra,
SAA(f) and SBB(f)  are real quantities.


