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Chapter 3: Topics in Neuroscience

In this chapter I will review the current issues and controversies in neuroscience
which have motivated the form of the network dynamics I investigate.  The review will
encompass both single neuron and integrative neuroscience, with the latter referring to
larger scales and interactions across scales.

I begin with an overview of those objects of neuroscience research that bear on
the research topic of this thesis.  Since the focus of the dissertation is on similarity and
object recognition, I survey recent experimental work on inferotemporal (IT) cortex, and
the theoretical commitments of the various research groups.  This region is clearly
implicated in recognition and memory of objects, so it is important to review the findings
in that area before evaluating computer vision systems with claims to biological
motivation and plausibility.

Finally, I describe different approaches to neural systems modeling and how
these relate to the structures and methods of experimental neuroscience.  A high level
treatment of the assumptions of connectionist neural modeling is contrasted with what
might be called dynamical pattern network modeling.  I situate the present work in this
modeling context.  The story will remain incomplete until the next chapter on nonlinear
dynamics, where many concepts required to discuss networks with more complex
dynamics are presented.  I revisit biological and neural modeling concepts after
introducing such dynamics, and again in the final discussion.

BASICS  OF NEURAL ORGANIZATION

The nervous system of humans can be regarded as consisting of peripheral
sensory and motor nerves, which connect transducers to the central nervous system.  The
brain itself consists of various concentric layers progressing from the evolutionarily
oldest brainstem, through the midbrain, to the neocortex.  Separate divisions within the
dense brainstem and midbrain regions are typically called nuclei or loci.  The cortex, in
contrast, is generally divided into regions (areas, modules) distinguished long ago either
anatomically (by staining), functionally (by observing the effects of injury on that region)
or both.  Modern imaging techniques reveal which of these modules are co-active in the
performance of a perceptual or cognitive task, and to a limited extent the sequencing of
their activity.

While cortical regions can be distinguished functionally, the amount of structural
similarity is striking.  The basic cellular unit is the neuron, with hundreds of specialized
types organized into micro-circuits and larger systems.  Cortical regions have a columnar
organization.  There is a fine structure of minicolumns (30 µm in humans) and a more
coarse structure of macrocolumns (.4 – 1 mm). For a recent review, see (Calvin 1995).
The number of neurons across thickness of cortex (30u cylinder) are remarkably constant
around - 110 in motor, somatic sensory, frontal, parietal, temporal, in mouse, cat, rat,
macaque monkey, and man (Mountcastle 1978).  Primary visual cortex columns are more
dense, with perhaps 160 cells with complex intra-modular connectivity.  By intra-
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modular connectivity, Mountcastle means that the connections between regions are not
simple one to one projections of every minicolumn to a corresponding one, but consist of
“subsets, each with a particular pattern of connections to similarly segregated subsets in
other regional entities”.

Within each column, neurons are organized into horizontal layers, again with a
relatively uniform scheme of projections into and out of layers.  Layers are numbered 1
(outermost) to 6 (deepest).  In the visual system, layer 4 receives input from thalamus,
basal ganglia, and other cortical areas.  It projects feed-forward to layers 2 and 3; these
are chiefly connected in their own layers and laterally to other columns.  These in turn
project to 5 (motor output) or 6 (return to thalamus and other sub-cortical structures.
Note that loops or recurrent structures are pervasive in at least three groupings: intra-
layer, inter-column, and cortico-thalamic.

While investigators such as Mountcastle and Calvin emphasize the pervasiveness
of columnar structures in the cortex, counter arguments questioning the role of columnar
structures are found in (Purves, Riddle et al. 1992); (Swindale 1990).

Many regions are organized as maps10,  meaning that the spatial relationship
between some sensory field is preserved through one or more registered regions.  The
visual system is well known in this regard; the sense of touch is also organized to produce
a topographic representation on a contiguous region of cortex.  There are often
characteristic topology transformations in this mapping structure.  The retina introduces
non-uniformities in sampling projected into visual cortex (area V1).  For example the
macaque monkey areas V2, V3, VP are elongated in the horizontal (central to peripheral).
Some areas (inferotemporal) emphasize the central, densely sampled region while others
(parietal) emphasize the sparsely sampled periphery.

Anticipating the topics of the later chapters, it should be pointed out that much of
the history of neural modeling beyond low level vision fails to take into account these
two spatially regularities: mapping and laterally connected columnar structure.  This
remains a gap between biologists and the connectionist community.  The family of
models in the present thesis, known as coupled map lattices or discrete time cellular
neural networks, resemble the mapped column structures, with each “cell” representing
collective behavior of hundreds or thousands of neurons.  Thus such models are
considered medium scale models, in contrast to microcircuit or small-circuit models.
Such regular physical architectures with chaotic units and recurrence have implicit
connection structures between communicating states, which may or may not be bound to
specific column-like structures 11.  The units of representation and computation are these
states, rather than activation values of specific output neurons of a microcircuit.

                                                  
10 The term map is used in a different sense elsewhere in this thesis, in the sense of a discrete time
function mapping values in a phase space.
11  For more detail on this topic of implicit structure in oscillating networks, see(Ito and Kaneko
2000) and (Kaneko 1990)
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THE NEURON

With a few exceptions, most theories of nervous system functioning focus on the
neuron as the main actor, playing roles in both signal processing and more abstract
computational processes.  The assumed complexity of the operation of single neurons has
tended to increase with time.  In their introduction to a recent compilation of neuron and
small-circuit level modeling, Abbot and Sejnowski (Abbot and Sejnowski 1999) offer the
sobering conclusion that at the time of writing (2000), there is actually little consensus
about the mechanisms leading to details of spiking activity in a single neuron, particularly
regarding fast, stimulus linked spike rate modulation that would be required for temporal
codes.

The classical model of neuron operation sees it as a threshold device, integrating
positive (excitatory) and negative (inhibitory) inputs on a graded potential input system.
This input system is the dendrite; a typical neuron receives input from as many as 10,000
other neurons.  When a threshold is exceeded at the cell body or soma, the neuron fires a
spike down the output (axon), which contacts other neurons.  The actual contact between
axons and dendrites is via complex electrochemical activity at synapses.
Neurotransmitters are chemicals released during firing of the axon, and received at the
dendrites; local production and absorption (re-uptake) of these chemicals are modulated
by complex electrochemical processes.  The modulation of thresholds by transmitters at
the synapse and the propagation of spikes both rely on the complex dynamics of ion
channels.  The dynamics of transmitter production, release, and channel chemistry are
subject to modulation at a variety of time scales, allowing networks with constant
anatomical connectivity to perform quite differently.

Any particular synapse is either excitatory (increasing voltage) or inhibitory
(decreasing voltage).  A particular neurons axon terminals are all either excitatory or
inhibitory; while most neurons receive a mix of excitatory and inhibitory input.  Families
of neurotransmitters play predominantly excitatory or inhibitory roles.

Early in the history of neuroscience it was thought that cross-scale interactions
between field activity of the neural mass and individual neurons (electrotonic coupling)
might play an important role in neural computation (Lashley 1942).  Recently, there has
been some revival of this concept via the idea that gap junctions12 sensitive to activity in
the dendritic mass (neuropil) may affect behaviorally relevant synchronization properties
in brainstem neurons, even though the gap junction mediated currents may be as little as
2% of the total dendritic currents (Usher, Cohen et al. 1999).  No equivalent
demonstrations of such effects in cortex are known to the author, but these results are
interesting in light of the fact mentioned earlier about relative sparseness (e.g. 10%) of
inter-column connections.  It is possible that rapid communication between columns
could be mediated through this mechanism in less time that would be required for
synaptic transmission.  The reader should bear this in mind when reviewing arguments
against any role for recurrent computations in visual processing, which are often made on

                                                  
12 Gap junctions are a cell membrane structure similar to ion channels; they are universal in
intercellular communication, not limited to neurons. Specific protein regulation mechanisms in
gap junction complexes have been implicated in disease, e.g. high frequency deafness.



33

the basis of the hypothetical performance characteristics based on synaptic transmission
delays.

EXPERIMENTAL NEUROSCIENCE METHODS

What we know of neural functioning comes from a variety of experimental
methods developed over the last 100 years; the organization of the next few sections
reflects the knowledge gained from, and theoretical biases associated with, several
techniques.  The emphasis is on signal flow and dynamics;  methods for ascertaining
structure at various scales, down to detailed receptor types, are beyond the scope of this
review.

Neural measurements on organisms are typically done in one of three modes.
Measurements may be performed on slice preparations (in vitro), with a section of tissue
cultured for some time.  With such cultures, transmitter dynamics can be observed with
the fast cyclic voltammetry technique (Stamford 1990).  Neuron cultures have also been
preserved directly on silicon electrode arrays, allowing extensive measurements
(Kowalski, Albert et al. 1992).

Temporary or permanent (chronic) electrode implants are on used on live
animals (in vivo processing).  The animals may be anesthetized, which of course makes
them easier to handle, but may give a distorted picture of neural functioning.  More
recent research tends to use awake, behaving animals, giving a better picture of normal
neural functioning; still, the animals often view impoverished scenes and are far from
natural ecological contexts.

The workhorse of experimental neuroscience is the single electrode
measurement.  There has been a strong mutual reinforcement of this technique with the
neuron doctrine, or localist processing: the idea that most representation and computation
in the nervous system is performed by single neurons and via small, specific functional
networks.

This technique has been supplemented more recently (beginning in the seventies)
by simultaneous multiple-electrode techniques.  Most of the experiments motivating
oscillatory models are based on observations with two or more electrodes simultaneously
recording with the same stimulus present.  There is also the possibility of an intermediate
technique of moving a single electrode to nearby areas while repeating the stimulus, but
due to habituation or learning this cannot really substitute for simultaneous
measurements.  Observations with multiple electrode techniques have given insights
promoting alternatives to the neuron doctrine, emphasizing so called “dynamic
assemblies”, cooperative processing, synchrony, and variable coupling.  Signal
processing techniques have been developed to assess the correlations between nearby
neurons.

In both single and multiple electrode techniques, the actual signal being
measured is voltage induced by conduction currents.  These include spikes and possibly
graded potentials – many neurons do not produce spikes.

Moving up to medium or mesoscopic spatial scales, local field potential
electrodes and electrode arrays have been employed to measure summed dendritic



34

currents over hundreds or thousands of neurons.  These currents are effectively a measure
of ensemble average spike density (Freeman 2000).  Some groups, such as Eckhorn and
colleagues in Marburg, measure both spikes and slow wave potentials in the same
system, allowing correlations between these levels of processing to be observed.
    These local field potential arrays are a medium scale version of the older
electroencephelogram (EEG) technique.  Most EEG studies record external to the scalp,
in single or multi-electrode (multi-channel) configurations.  These signals are typically
bandpass filtered and analyzed for temporal changes and for inter-channel interaction in
various frequency bands.  EEG signals are rather diffuse (many current sources sum at an
electrode) and historically considered as noisy;  to investigate stimulus correlated signals,
a common technique is to repeat a trial many (e.g. 100) times, and sum the resultant
waveforms.  Noise components are assumed to cancel, with the resulting evoked potential
signals showing correlations to perceptual and cognitive events.

The EEG was the first “whole brain” measurement technique; investigations at
this scale are usually designated as imaging or mapping.  More recent imaging techniques
include MEG, which is costly but has higher spatial resolution relative to EEG.  A variety
of slower temporal, medium spatial resolution techniques (PET and fMRI) measure
cortical blood flow, which is correlated to the activity in some area relative to a baseline
condition.  Finally, a variety of optical methods are in use, in some cases on awake
behaving animals with implants.

One drawback of all imaging techniques is that networks consist of inhibitory
and excitatory neurons, and activity per se does not distinguish between them.  As we
will see, many theories of large scale network operation depend on interconnected
excitatory and inhibitory pools, with the resulting activity not always easily characterized
in simple active inactive terms.  A better understanding of mutual influences of long
range (i.e. between areas) activity and its local effects on multi-channel measurements is
likely to emerge in the near future, through efforts aimed at discovering the flow of
information and causal influences between co-active areas (Kaminski and Blinowska
1991);(McIntosh and Gonzalez-Lima 1994; Taylor, Krause et al. 2000).

CLASSICAL, NON-CLASSICAL, AND DYNAMIC RECEPTIVE FIELDS

With all these techniques, experimenters must choose to define the stimulus
presented directly or indirectly prior to recording.  Especially for single and multi-neuron
techniques, theoretical assumptions on the nature of the processing operations
constrained the range of stimuli used for many years in what, in retrospect, appears to
have been misleading fashion.  Typically such studies were done with sine wave gratings
of various orientation, frequency, and contrast levels.  Under these circumstances, the
concept of local, anatomically determined micro-circuits performing feature detection
became well established.

The usual formulation of a feature detector neuron involves a local configuration
of excitatory and inhibitory neurons called on-center off- surround.  A neuron receiving
such input will respond most strongly (i.e. produces spikes at a maximum rate) to specific
frequencies and orientations, forming a receptive field.  The set of neurons sensitive to
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particular orientations and spatial frequencies is considered as a channel, with the
function of primary visual cortex essentially acting as a filter bank with some adaptive
dynamic range correction capability.

Fig. 3.   The response of (A) on-center off-surround receptive fields
and (B) off-center on surround in the retina as a function of the
distance of a bar stimulus from the field center.  From Maffei, L.
(1968). “Inhibitory and facilitatory spatial interactions in retinal
receptive fields.” Vision Research 8: 1187-1194; reproduced with
permission of Elsevier Science.

 The modern view of receptive fields, while still formulated as static structural
elements in the vision system, is to consider simple cells as optimal two-dimensional
Gabor filters.  This representation has been demonstrated to achieve theoretical maximum
in both frequency and spatial resolution (Wilson and Knutsson 1988), and is now
commonly used as the “front end” for many successful computer vision applications.
Texture analysis, in particular, is seen to be largely a function computable by the
receptive field structures of primary visual cortex without additional back end processing
(Bovik, Clark et al. 1989).

 The receptive field concept has of, course, been subject to criticism.
Fundamentally, practical limitations in biological recording preclude exhaustive sampling
of the possible stimulus space.  Harth showed that determining a receptive field via his
Allopex biofeedback device, which changed a video stimulus until a local maxima was
reached in the neural response, gave a completely different picture of the field shape than
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conventional grating methods (Harth and Tzanakou 1974).  The modern version of
independent, fixed (i.e. structural) Gabor channels has been questioned based on
psychophysical findings that pre-trained vs. naive subjects exhibit different confusion
patterns for a mirror image compound Gabor stimulus (Rentschler, Hubner et al. 1988);
this is interpreted as evidence for cooperative interactions and stimulus dependent
adaptation.  More recent objections to the receptive field channel model of primary visual
cortex function based on experimental observations of multi-neuronal correlations and
temporal modulation in response profiles are treated below.

 From a theoretical standpoint, the Gabor filter bank and subsequent wavelet
representations represent an improvement in distinguishing textures with the same
Fourier spectrum; this comes at the expense, however, of translation and rotation
invariance.  The concept of shiftable transforms and steerable pyramids represent one
approach in computer vision to overcome these limitations (Simoncelli, Freeman et al.
1992).

  Further studies with less constrained visual stimuli revealed a more complex
picture.  The presence of orthogonal components modulated the response of feature
detectors;  eventually it was determined that rather distant features could modulate the
response of a classical feature detector  (Allman, Miezin et al. 1985), and that a single
neuron’s output carried information on the global character of the stimulus at later epochs
(Lee, D. et al. 1998).  The term non-classical receptive field has been introduced to
acknowledge the changing nature of this concept.

 Systematic examinations of the temporal response in primary visual cortex in cat
(Area 17) undertaken by Dinse and coworkers (Dinse, Kruger et al. 1991) revealed that
receptive fields have a dynamic (time-varying) orientation sensitivity and size,
inconsistent with a static structurally determined inhibitory surround. Further, four
different families of neuronal subsystems were found within the area. Type I neurons
(24%) showed an initial period of non-selectivity, with selectivity emerging after about
40 ms.  Type II (34%) similarly showed emerging selectivity, but the selected orientation
changed over time.  Type III neurons (25 %) showed more conventional orientation
tuning with no time dependence, but with broader tuning than that exhibited by the other
types.  In the time varying types, the response epoch (70-90 ms) with the sharpest
response did not coincide with the highest rates of response.

 The overall pattern of the response was characterized as a damped aperiodic
oscillation of low frequency (6-20 Hz) superimposed by higher frequency oscillations.



37

 

Fig. 4.   Time varying receptive field structures. See text above for
description  From  Dinse, H. R., K. Kruger, et al. (1991). Temporal
Structure of Cortical Information Processing: Cortical Architecture,
Oscillations, and Non-Separability of Spatio-Temporal Receptive Field
Organization, in Neuronal Cooperativity. J. Kruger. Berlin, Springer-
Verlag: 68-104. Reproduced with permission of Springer Verlag.

 These two key aspects of neural response identified by Dinse and coworkers –
diverse types and temporal variation in response profiles - should be kept in mind when
evaluating work on object-level recognition in inferotemporal cortex., which will be
surveyed in a subsequent section. 13.

 One study states that no difference in discrimination capability of single neurons
is  found by comparing fine-grained temporal epochs in IT cortex (Tovee and Rolls 1995)
compared to the rate over an entire 400 ms response window.  However, the possibility of
different types of neurons, or a population response is not considered.

 The models I will describe later  correspond to large neuronal populations, but
also exhibit this temporal response variability.  There is a brief optimal readout window

                                                  
 13 A recent cortical column model (Hansel and Sompolinsky 1996) also exhibits temporal
variation in response profiles.
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in which objects can be maximally discriminated.  In my model, this readout window
applies to the entire population of high level units.

 

 THE PROBLEM OF NEURAL CODING

 The receptive field idea was one of the first biological demonstrations of a
plausible neural computation and code, though theoretical studies of neural coding and
computation predated the demonstration of receptive fields by Hubel and Wiesel  (Hubel
and Wiesel 1962).  I will take up the idea of coding a bit more formally in a subsequent
chapter; for now it is worth stating that coding in communications theory normally
implies a sender and a receiver.  In experimental neuroscience, the complexity of the total
system dictates that researchers focus on a small piece of a large network of processing
and transmissions leading to behavioral distinctions.  Particularly when the object of
study is the spiking activity of a single neuron, the ultimate receiver is often unknown
and assumed to be capable of using the information; in fact the researcher interpreting
the code of the neuron is the only receiver known with certainty.  In general, this readout
problem is a major issue that must be addressed by neural modeling with claims of
biological plausibility.

 The receptive field or feature detector, grounded on the assumption of spike rate
coding in single neurons, has been challenged based on this readout principle.  Neurons
show a high degree of variability even when presented with the same stimulus.  Spike
generation is precise and reliable, so this variability arises from fluctuations in input that
drives neuronal firing.  But this view is problematic due to the large (e.g. 104 for cortical
pyramidal cell) numbers of inputs integrated; one would expect small variability due to
the central limit theorem.  Koch & Softky thus argue that neurons do not integrate
excitatory synaptic inputs over a reasonable period of time. (Softky and Koch 1994).

 Another readout-based challenge to rate codes is that the most reasonable
window of integration for a rate code is the longest duration over which the stimulus can
be approximated as taking a constant value.  Some neurons only fire about one spike in
such an interval, and thus arguably cannot encode and convey information through a rate
code.  If the neuron is part of a large population, this may be overcome by encoding (and
reading out) a population firing rate (Abbot and Sejnowski 1999).

 If the use of rates is viewed as problematic, what are the alternatives? Two  major
alternative paradigms are under intense investigation.  One is that individual spike arrival
times serve as a code, and in general spike arrival time coincidences are significant for
algorithm level neural computation.  Another is that significant computation is done by
cell assemblies of one form or another, with population coding of intermediate results,
memories and motor outputs.

 The variety in potential coding schemes has been recognized for a long time, but
practical difficulties in experimental methods have inhibited the investigation of many
possibilities other than local rate codes.  Bullock, for example, drew up a list of
possibilities summarized in the outline below, and suggests that many or all of these
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coding strategies are employed somewhere in the nervous systems of different organisms
(Bullock 1993).

 Candidate Neural Codes
 I. Subthreshold Graded Events
 II. Impulses in Unit Neurons

 A. Representation by Identity of Active Fiber
 B.  Codes based on Temporal Properties of Impulses

 Time of Occurrences
 Interval Statistics
 Frequency: Weighted Average
 Frequency: Instantaneous
 Frequency: Increment Above Background
 Frequency: Rate of Change
 Frequency of Firing / Missing at Fixed Intervals
 Coefficient of Variation
 Higher Moments: Interval Histogram Shape
 Temporal Patterns of Impulses
 Number of Impulses or Duration of Burst
 Velocity Changes in Axon

 C. Codes on Other Properties
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 Candidate Neural Codes, continued
 

 III. Ensemble Activity
 A. Representation by Spatial Array

 1. Topographic Distribution of Active Fibers
 B.  Codes Based on Temporal Relations

 1. Latency Distribution
 2. Phase Distribution
 3. Probability of Firing After Stimulus: PST Histogram Shape

 C Representation by Form of Composite or Multi-Unit Activity
 1. Evoked Potential shape
 2. Slow waves in ongoing EEG

 
 The coding strategies treated in the present work are a small subset of these

potential forms of coding and computation compiled by Bullock over 30 years ago from a
workshop on the nervous system.  The following diagram presents a restricted set of
possible choices and locates some of the functional network types discussed in a space of
choices for coding.
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Fig. 5.    A space of neural codes, with the dotted lines pointing to
prototypical functional units.  The x axis indicates whether coding
occurs at single neurons or via groups.  The y axis indicates
whether, for group or population codes, whether the code is local or
statistical.  For the former, the code may be distributed but still
depend on activation values at particular units; for the latter,
statistics over the entire population carry the code.  The z axis
indicates whether the relevant units and the code are monotonic
activation values, or involve temporal coding.  To produce temporal
codes, neurons act as spike timing detectors and / or constituents of
distributed bifurcating subsystems in medium scale oscillatory
networks, resulting in temporal patterns in phase dispersion and
ensemble average frequency.
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 NEURONS IN CELL ASSEMBLIES

 In theoretical and computational neuroscience, the alternative to coding and
computation with neurons and small circuits has been the concept of a cell assembly.

 Early research in cell assemblies concerned conditions for activation and stability
in memory.  Over time, generalized notions of assemblies have come to be replaced by a
variety of specific functional circuits of connectionism, though a few researchers have
always focused on larger scale models.  Even in these models, activation was the
dominant paradigm for analysis and simulations.

 Much recent research implicated temporal correlations and synchronization for
certain classes of coding and computation in early visual areas, with substantial evidence
for this view reviewed below.  To distinguish the classical assembly based on activation
from new forms emphasizing spatio-temporal patterns, correlations, and synchronization
phenomena, the term dynamical cell assembly was recently introduced (Fuji, Ito et al.
1996); however it was presented in the context of small spiking networks.  This may be a
worthwhile distinction, but need not be limited to spike correlations and small circuit
models.

 I suggest that in higher areas, such correlations are functional correlates or
observables of larger scale computational processes, for which the simplest algorithmic
explanatory level lies in non-stationary dynamics of coupled oscillator systems.  This
algorithmic understanding may contribute to an extension or revision of extant cell
assembly concepts.

 One contribution of this thesis is the demonstration that recurrent dynamics,
spatial coupling, and temporal modulation of synchrony can support computations with
relatively simple and homogenous structure.  Synchronization is affected through
modulations of network control parameters; these may reflect intrinsic rhythms, be
generated in response to stimulus, or a combination of both.  In this formulation,
collective variables (i.e. population codes) measured on a set of oscillators, supplement
classical coding concepts of activation variables on localized units  or localized cell
assemblies.  Each of these oscillating assemblies may correspond to neurons rather
widely distributed, such as a column of cortex with connections to interacting subcortical
areas.  Such assemblies may interface with rate coded activation assemblies for readout
or memory coding.

  In contrast to small spiking microcircuits, larger scale dynamical states are more
easily correlated with medium and large scale electrophysiology (Freeman and Barrie
1994).  The validation of connectionist models from single neuron or localized multi-
channel recordings is a difficult task, because measuring all the neurons in a network is
simply impractical.

 For some researchers, the large amount of inter-region connectivity and the fact
that most neurons project both locally and between regions, argues against local modular
networks as envisioned by classical “small circuit” connectionism and classical modular
cognitive science (Elbert, Ray et al. 1994, ); (Mumford 1994).
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 THE CONTROVERSIAL ROLE OF RECURRENCE IN CODING AND COMPUTATION

 We have seen that the anatomical connections may be described as reciprocal or
recurrent at a variety of scales - within a single layer of minicolumns, between the
laterally connected columns constituting a  macrocolumn, between cortical areas and the
subcortical areas which project to them, and between different cortical modules.  In spite
of this connection pattern, much theory in sensory and especially visual neuroscience is
based on feed-forward models of computation, with lateral connections limited to special
roles such as the on-center off surround receptive fields.  In the context of feed-forward
theories, if any role for local recurrence (i.e. within a column) is envisioned, it is to form
population codes.  These may be simple averages (to overcome the response variability
cited earlier by Softky and Koch)  or to exploit a Gaussian distribution of rates to perform
function approximation (Poggio and Girosi 1990).

 At larger scales, recurrent connections projecting back toward earlier sensory
pathway regions have been ascribed roles in attentional processes, shifting and rescaling
control (Van Essen, Anderson et al. 1994), or contextual modulation (Allman, Miezen et
al. 1985) via linear signal processing mechanisms such as inhibitory gating of pathways
or responses of receiving cells.  Grossberg and colleagues conceive of some recurrent
back projections as expectation signals (Grossberg 1980).

 Several investigators working on problems of object recognition stress that based
on the rates of recognition observed and the number of modular stages thought to be
involved in processing, only feed-forward processes are possible.  The putative site of
invariant object recognition is the inferotemporal cortex, and stimulus invoked responses
in this area are sufficient for experimenters to identify the stimulus form presented (from
a restricted range of possibilities ) in about 100 ms.

 If the coding assumption governing both computation and representation is
localized rate coding, the arguments are compelling.  However, as we begin to review
evidence and theory derived from multi-channel recordings in IT cortex, other coding and
computation possibilities are raised based on spike coincidence, and deterministic
changes in rates in larger networks of aperiodic oscillators.  It is unclear that round trips
between cortical modules, between cortico-thalamic areas, or widely separated lateral
connections are required to achieve correlations between areas.

 Local recurrence in columns, between neighboring columns (possibly exploiting
gap junctions), and with ongoing background input functioning as bifurcation control
signals are assumed to be the biological correlates of the models I develop in the next
chapter.  The ongoing background input may indeed be rhythmic signals from recurrent
cortico-thalamic loops, but no signals need make the round trip.  Freeman estimates the
average time for signal transfer between pyramidal cells at distance of 1-2 mm at about 8
ms (Freeman 1992).  This puts an upper bound of 10-20 iteration cycles for perceptual
computations which produce a response in 100-200 ms.
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 TEMPORAL VS. RATE CODING STIMULUS PREDICTION FROM POPULATIONS IN

PRIMARY VISUAL CORTEX

 Kruger and Becker conducted studies with a regular spatial array of
microelectrodes in Area 17 (primary visual cortex) of the cat, in which they assess the
ability to predict which of 16 moving bar stimuli was shown (Kruger and Becker 1991);
(Kruger 1991).  An average response vector over several trials was computed for each
stimulus, with the prediction based on a single non-averaged trial.  The total response
time was broken up into temporal bins, so that the vectors to be compared are of size:

 

 channels
responseTime

binWidth
∗

 
 where channels is the number of electrodes (30), responseTime is the post-

stimulus time interval recorded (300 ms), and binWidth is the time in ms. of a temporal
bin on each channel.  Two measures of vector comparison were used; the cosine of the
generalized angle method gave better predictions than a sum of difference measure.  This
implies that scaling all bins by a constant rate increase does not change the stimulus
prediction.  The authors interpret this to mean that the temporal pattern codes stimulus
identity but the rate codes the importance of the response.  Further, they suggest that this
helps resolve the apparent coding paradox related to how attention could modulate the
early vision response if rate codes alone were used.  The major finding is that the best
predictions are obtained with more fine-grained bins, indicating that temporal codes
rather than rate codes are the best population measure.   A broad maxima from 20 to 80
ms is seen (figure below on following page).
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Fig. 6.   The percentage of corrected responses as a function of the temporal
resolution for averaging spike rates of a 30 channel spatio-temporal
response vector for various time bins.  Using a rate code (i.e. averaging
over the entire 300 ms response interval) approaches a chance prediction
level.  From Kruger, J. and J. D. Becker (1991). “Recognizing the visual
stimulus from neuronal discharges.”, Trends in Neuroscience 14: 282-
285.  Reproduced with permission of Elsevier Science.

 SYNCHRONIZATION AND CORRELATIONS: PHENOMENA AND ANALYSIS

METHODS

 I now turn from the discoveries and controversies surrounding single electrode
measurements to a new set of ideas on coding and computation which have emerged from
simultaneous multiple electrode measurements of temporal variation in neural
microcircuits.  The work of a few different groups will be briefly mentioned; an
ambitious survey by Fuji et al. treats much of this work in greater detail, along with some
modeling work on spatio-temporal coding (Fuji, Ito et al. 1996).  Fuji et. al model these
phenomena with spike detector neuron models with delay.  In the next chapter on
dynamics and methods, I will present models which embody similar spatio-temporal
computation and coding principles but correspond to larger scale network dynamics.

 To begin, I will note the definitions given in that survey for some common terms
and attempt to augment them slightly.  Coincidence refers to local events in the synapses
of a single neuron, essentially the probability of receiving spikes in a given temporal
interval.  Synchrony refers to simultaneous (phase locked) firing of a group of cells.  The
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two are closely related.  Models of neural functioning involving precise spike timing
posit that neurons are maintained near threshold by balanced excitatory and inhibitory
input; in this state, they  tend to fire based on sufficiency of coincident input with less
regard for the average rate of firing on excitatory inputs.  Coincidence is essentially a
pathway to synchrony.  Synchrony can be considered at the level of spikes or rates; for
the latter, some integration window may be chosen and synchrony measured at the level
of corresponding rates, even if individual input spikes on neuron events showed
coincidence only at chance levels.

 Correlation comes into play at a system level; Fuji et al. define a dynamical cell
assembly as a group which, in response to the context of stimulus or another group is
temporarily “bound by coincident timing of spikes”.  This is a more complex phenomena
than synchrony, as it may imply temporal variations in correlation which lead to the
formation of spatio-temporal patterns and to the formation of clusters of synchronization.
Peaks in cross-correlation between members of such an assembly may occur with delay.

 Historically considered as stationary processes, neuronal inter-spike intervals
show characteristically Poisson distributions in cortex, but Gaussian distributions in
motor systems.  Given this fundamental irregularity, fluctuations in correlations are
expected, and expectations and variances for correlation between two neurons can be
defined.  These are dependent on the firing rate, computed over some integration
window.  What is of interest to experimenters, then, are repeatable stimulus invoked
correlations which are significantly above or below the expected values.

 These measurements clearly depend on the time windows chosen to compute
rates; classical cross-correlation methods assume that the neural signal is stationary.
Methods have been developed to handle time varying rates by Aertsen, Gerstein, Vaadia,
and coworkers (Gerstein 1988; Aertsen, Gerstein et al. 1989; Aertsen and Gerstein 1991),
(Vaadia, Ahissar et al. 1991).  The resulting data for pairs of neurons show peaks and
troughs in correlation over time, which are interpreted as changes in functional coupling.
This functional coupling or effective connectivity is in contrast to structural (anatomical)
connectivity.  It emerges rapidly, and is observed to be context dependent and dynamic
on several different time scales.

 An example of a two channel non-stationary correlation measurement for a
neuron pair is shown in the following information rich figure. Each x, y point of the
100x100 matrix corresponds to the correlation strength for a different time lag between
signals.  Along the x and y axes are conventional post stimulus time-locked histogram
(PSTH) spike counts for each neuron.  This matrix has been normalized by subtracting
the individual neuron PSTH cross product and dividing by the cross product of standard
deviations of the individual PSTH.  It is this normalization procedure which attempts to
extract modulations in coupling from  stimulus related modulations of firing rates.

 The diagonal base of the “T” on the right half of the figure is the PST
coincidence histogram, obtained by integrating over a 4 bin radius orthogonally from the
diagonal of the left normalized matrix.  The diagonal crossbar is  a standard cross-
correlogram.  The two orientation and direction sensitive neurons from cat area 17 were
exposed to moving bar stimuli, switching from non-preferred to preferred direction.
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Fig. 7.   Temporal changes in correlation structure for non-stationary signals.
See text above for explanation.  From Aertsen, A. M. H. J. and G.
Gerstein (1991). Dynamic aspects of neuronal cooperativity: fast
stimulus-locked modulations of effective connectivity. Neuronal
Cooperativity. J. Kruger. Berlin, Springer-Verlag.  Reproduced with
permission of Springer-Verlag.

 Recent study of synchronization patterns in motor cortex indicates that
synchronization and firing rate modulations are both important and may play different
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roles (Riehle, Grun et al. 1997).  For one-third of 359 neuron pairs recorded, significant
synchronization was observed, loosely time-locked to behaviorally relevant events.
Synchronization in spikes was accompanied by firing rate modulation for external
stimuli; for internal events (i.e. stimulus expectancy) synchronization occurred but
significant firing rate modulations were absent.

 PERIODIC AND APERIODIC OSCILLATIONS AT SMALL AND MEDIUM SCALES

 The early history of cell recording was performed chiefly within the framework
of feature detectors described above.  From about 1985 on there has been a significant
trend toward using multiple electrodes, documenting  a variety of oscillatory phenomena.
Seminal experiments of this type were rabbit olfactory system recordings (Skarda and
Freeman 1987); (Freeman 2000), and observations of brief stimulus linked periodic
oscillations in cat Area 17 (Eckhorn, Bauer et al. 1988; Gray and Singer 1989).  Further
observations of periodic stimulus linked oscillations in monkey primary visual cortex
followed.  The phenomenon has been controversial, perhaps in part by an early emphasis
on periodic oscillations which are less common than aperiodic oscillations.  With
aperiodic oscillations, the apparently deterministic nature of the process and the role in
cognition only becomes evident by coherence studies carried out in a behavioral context
(Bressler and Nakamura 1993).

 The interpretation of these results has varied, but usually there has been a focus
on feature linking or binding for the periodic oscillations, while aperiodic oscillations are
interpreted as possible temporal codes, or as products of deterministic chaos.  As
computational studies of coupled high dimensional chaotic systems have proceeded in
parallel with the experimental work, the interrelated nature of all of these viewpoints has
become apparent.  Strongly coupled chaotic systems can become phase locked in periodic
or aperiodic modes, and exhibit transient episodes of periodic oscillations; such systems
will be described in the next chapter, and are the foundation for the algorithmic level of
the similarity and stimulus invariance problems.

 In the next several sections, some specific results are cited in support of this
view.  For more in depth reviews of oscillation and synchronization experiments and
theory consult Bressler (Bressler 1995), Singer (Singer 1996), Eckhorn (Eckhorn 2000)
for diverse perspectives;  Elbert et  al. emphasize chaotic oscillatory dynamics (Elbert,
Ray et al. 1994),  while Fuji et al  (Fuji, Ito et al. 1996) emphasize the formation of cell
assemblies.

 The chief sense in which the present work offers a perspective distinct from these
investigators, is an emphasis on temporally structured (e.g. non-stationary)  modulation
of synchronization in coupled chaotic systems14.  I assert that this perspective holds some
potential to explain many experimental datapoints, or at minimum to widen the

                                                  
 14 It seems on reflection that the work of Bressler and colleagues cited earlier, involving
modulations in synchrony over many bands (with alpha showing a slightly different profile) is
closest in spirit to this emphasis.
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discussion.  This point of view also offers a mechanism for how distributed inter-regional
networks might cooperate to perform computations in task specific brain states.
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Fig. 8.   Illustration of assemblies in two regions R1 and R2 cooperating to
change dynamical parameters.  A) The ovals represent coupled pools of
randomly connected excitatory and inhibitory neurons. At time t1 one of
the pools decreases its activity. B) Each curve on the right indicate spike
firing probabilities in successive time windows;  The height of the curve
can be modulated by changing thresholds or excitatory inhibitory ratios.
(See discussion of (Anninos, Beek et al. 1970) in the following chapter).
The two curves correspond to dynamics before and after removal of the
R2 excitatory pool at time t1.

 PERIODIC STIMULUS LINKED OSCILLATIONS IN VISUAL CORTEX

 Gray and coworkers found that cells 17 mm apart in cat Area 17 (primary visual
cortex) with similar orientation preference showed both oscillations and significant
correlation for a long moving bar which passed over both cells simultaneously (Gray, P.
et al. 1989).  Weaker correlation was seen for two separate moving bars, while no
significant correlation was seen for bars moving in opposite directions.  The spike counts
produced by the two cells were similar under all three conditions .

 Later studies showed that such effects were replicable in awake cats and
monkeys, and synchronization could be observed even across hemispheres.  These have
been called fast cortical oscillations, occurring in the gamma range (30-80 Hz).

 Eckhorn (Eckhorn 2000) suggests that the classical receptive field concept should
be extended  or supplemented by association fields which capture feature context, and
therefore larger scale spatial regularities in the input.  Using synchronization dynamics
and coding, these association fields represent small visual objects or parts of larger ones,
extending over a few millimeters of cortical surface.
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 MODULATION OF COHERENCE BETWEEN REGIONS

 Seeking to explain large scale integration of networks, Bressler proposed three
steps required to map functional connections among cortical regions. Sites from each area
should be sampled simultaneously, and all possible site pairs should be examined for
synchronization.  Studies should be carried out within the context of a well defined task;
and the measures of synchronization should allow for the possibility of aperiodic
synchronization.

 Several interesting findings resulted from this approach.  Synchronization of
distant (frontal sites) could occur at roughly the same time it appeared in visual sites,
indicating that serial cascades from visual areas to frontal played little role.
Synchronization appeared in episodes lasting from 50-299 ms.  These episodes were
broadband, not limited to γ synchronization seen in visual cortex. Differences were seen
in the GO (motor response) and NO-GO (response withheld) conditions, particularly for
non-visual sites.  This is interpreted as indicating a functional role for synchronization.
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Fig. 9.    Local field potential, filtered from 30-80 Hz, for a single trial,
showing modulations in coherence of IT and striate cortex.  In the framework of
the Soca model described here, these modulations might correspond to transfer of
phase synchronized contour border shapes from V1/V2 to IT (stimulus onset to 50
ms) in a restricted subspace of the dynamics, followed by subspace
desynchronization (reduced local coupling), and subspace synchronization
epochs.  From Bressler, S. L. (1995). “Large-scale cortical networks and
cognition.” Brain Research Reviews 20: 288-304.  Reproduced with permission of
Elsevier Science.

SPATIOTEMPORAL OSCILLATION PATTERNS IN POPULATIONS

Walter Freeman and coworkers have refined experiments and a theory of
medium scale (mesoscopic) neural function in the olfactory system over the course of
nearly 40 years, in one of the most comprehensive, multi-scale research programs in
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neuroscience.  Single neurons play little role in this program, with the emphasis on group
activity, and with oscillations apparent at higher levels and observable in EEG.
Individual activity is important chiefly in forming a transfer function of pulse to wave
mode in dendritic mass (neuropil) groups.  These groups are exclusively either excitatory
or inhibitory, with primitive oscillating groups emerging from connecting the two types.
Beginning in the mid 1980s, their interpretation of olfactory neural dynamics emphasizes
spatial patterns of amplitude modulation, possibly as a manifestation of underlying
chaotic dynamics.  Further research has complicated what initially promised to be a novel
and possibly comprehensive theory of neural function.

Skarda and Freeman documented physiological evidence for complex dynamical
behavior in the rabbit olfactory bulb and provided an analytical model and numeric
simulations with good fit to the EEG signals measured in vivo (Skarda and Freeman
1987).  One key result was that the encoding of learned perceptions are “wings of chaotic
attractors” of the global network, in contrast to the point attractors of Hopfield and feed
forward networks.  The term wings, to my knowledge, rarely appears elsewhere in
dynamics literature; perhaps a more mainstream and contemporary reading would be
dynamical motion with reduced phase space volume, exhibiting the underlying unstable
periodic orbits.

Two key roles for the intrinsic chaos of the olfactory bulb are envisioned.  The
network cycles between highly chaotic and convergent (quasi-periodic) phase regimes,
corresponding to exhalation and inhalation.  The background chaotic state is
deterministic, but is modified by each new perception-learning cycle of the network.  The
chief claim made for the function of these chaotic-period cycles are that they provide a
novelty filter to stimulate motivation; a novel perceptual field will not fall into an existing
cyclic attractor, but instead falls into a so-called chaotic well.  Entry to this dynamics
triggers a change in the network parameters to allow formation of a unique attractor and
category, which is then learned by weight modification.  It is also conjectured that the
chaotic state provides rapid and unbiased access to existing attractors, and further that the
chaotic half of the cycle avoids any accidental entrainment of attractors due to co-
activation of neural assemblies from intrinsic structural resonances.

Regarding  the theory of binding by oscillations, Freeman states  that within his
spatio-temporal pattern framework, the narrow band oscillations (the observations of
Gray et al., Eckhorn et al., and subsequent workers described above) should be
considered as transient coherences or intermediate products of integration; he asserts that
they are not given as output (of a modular region) unless their phase and frequency are
consistent with the whole (larger scale emerging pattern).

In recent writings, Freeman de-emphasizes his previous commitment to pure
chaotic attractors, in favor of a more general non-stationary processing scenario (Freeman
2000).  He has stated:

The issue is not whether cortical dynamics is chaotic, that is not only
unresolvable but unimportant.  The issue is whether masses of neurons forming
an area of neuropil are capable of establishing spatial patterns of cooperative
neural activity with characteristic broad spectrum carrier  over areas far greater
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than the mean length of dendritic and axonal arbors.  These patterns must be
formed in time periods much shorter than their 0.1 sec duration.  [My work]
shows these are reliable properties of laminated neuropil.
He has explicitly argued against strongly coupled chaotic oscillators as a model

of brain dynamics recently (Freeman 1999), stating that “the synaptic coupling of
multiple chaotic domains in the neuropil of cerebral cortex is not revealed in phase
locking  or synchronization at zero lag of local mean fields in the time domain”.

The work described in this thesis, while using coupled chaotic oscillators as a
starting point, does not assume phased locked synchronization or stationarity.  In fact,
nonstationary dynamics and avoidance of what might be called subspace synchronization
are built into the learning system.  While phase synchronization in the sense discussed in
this review plays only an implicit role in the networks dynamics, this second meaning of
synchronization derived from symbolic dynamics and graph theory, does play a crucial
role.  The concept will be further developed in the next chapter.

LARGE SCALE DYNAMICS: EEG AND MEG MEASURES AND THEORY

For nearly 70 years, large scale electric fields have been observed non-invasively
in animals and humans, for both research and clinical applications. The
electroencephalogram (EEG) is sensitive to both cortical and sub-cortical components,
has poor spatial resolution, and incurs distortion in spatial patterns due to impedance
differences in tissue.  More recently, the magnetoencephalography (MEG) technique has
permitted observation of magnetic fields, which offers several advantages (Basar 1998).
MEG is selective to cortical activity, in contrast to EEG which mixes sub-cortical and
cortical sources.  The skull and extra-cerebral tissue are practically transparent to MEG.
EEG requires selection of an arbitrary ground reference state, while the MEG field does
not. The dipole moments measured by MEG are higher resolution; 10nA of current is
estimated to correspond to the emission from 200-500 mm2 of cortex (Hari 1997).
However, the MEG technique is more expensive and less widely available.

Both EEG and MEG are generally broad spectrum, with changes in band power
and inter-regional correlations studied for functional relationships to perceptual and
cognitive processes.  The following table summarizes the classical bands of interest;
certain boundaries, especially gamma, seem to escape consensus.

Table 1.   Major Rhythms in the EEG

band frequency
range (Hz)

behavioral and cognitive correlates

delta 0.5-3.5 deep sleep
theta 4-8 early stage sleep
alpha 8-13 mental activity, memory, attention,  association
gamma 30-80 sensory processing
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There are two main approaches to studying the interaction of large scale
electromagnetic oscillations with cognitive, perceptual, or motor activity.
1. Searching for stimulus (or internal event) related trends in band power.  This is the

field of evoked potential studies.  Correlates of behaviorally related internal events,
such as decision processes or motor preparation events, may be studied in addition to
responses to an external stimulus. Typically, many responses to a repeated
experimental trial are summed, under the assumption that any signal is embedded in a
large noise component which approaches zero mean over many trials.  The resulting
curves show changes in spectral content at characteristic latencies.  More recently,
there has been an emphasis on more subtle changes in the shape of spectral peaks.

2. Examining correlations in both phase and amplitude between regions thought to be
active.  Techniques showing changes in cortical blood flow may be used to guide this
research, establishing spatial regions of interest for analysis.

Another approach pursued by several investigators over the last generation is to
apply analysis methods of nonlinear dynamics, attempting to characterize the signals as
low-dimensional chaos; see Elbert (Elbert, Ray et al. 1994) for a survey.  This approach
has fallen out of favor, since the methods require long periods of stationarity.  Freeman,
one of the early pioneers in this approach, has recently called that program a failure,
given that dynamics appear to be non-stationary, irreducibly high-dimensional, and
blending elements of determinism and stochasticity to serve specific functional roles
(Freeman 1999).

Signal stationarity (constant parameters in the underlying dynamics) and the
relationship of noise are constant source of difficulty and controversy in the field.
Though many of the classical techniques (Fourier decomposition of signals, correlation
analysis) assume stationarity, there is widespread agreement on the non-stationarity of
EEG, leading to the recent emphasis on spectral shapes and correlation changes as inter-
regional control systems.  A variety of methods for analyzing non-stationary signals, or
segmenting them into stationary windows have been developed (Gersch 1987; Pardey,
Roberts et al. 1996).

Another problem in EEG analysis is that the background state of an organism is
highly variable and partly determines the evoked response.  To compensate for variability
in evoked response dependent on the background conditions at the time of stimulus
variation, Basar and coworkers more recent methodology consists of recording pre-
stimulus EEG and post-stimulus evoked potential.  A so called enhancement factor (the
ratio of evoked to background  power for frequency bands) is considered as a measure of
resonance phenomena (Basar 1998).

A number of methods have been proposed which attempt to go beyond
correlations, by determining the flow of causal influence between co-active and
correlated regions (Kaminski and Blinowska 1991); (McIntosh and Gonzalez-Lima
1994).
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INFEROTEMPORAL CORTEX AND OBJECT RECOGNITION

In this section, I will review some experimental data and interpretive
approaches related to inferotemporal cortex (IT).  This is the region - more accurately a
complex of several regions - most implicated in invariant object recognition and memory
formation, based on lesion studies and a long history of experimental work.  The
experimental data reviewed in this section represents both classical and newer concepts
introduced above, with little consensus on the neural coding and representations
strategies evident at the time of writing.

Architecture of the Ventral Visual Pathway
Neuropsychology has long recognized two visual systems operating in parallel,

the so-called ventral and dorsal streams.  Historically these have been considered the
what (ventral) and where (dorsal), with both assumed to serially proceed to higher level
cognition and motor input, but these distinctions have been revised somewhat (Milner
1999).  The ventral stream provides visual contents of perceptual experience, and codes
information in form suitable for processes like imagining, recognizing, and planning.
The dorsal stream serves the immediate function of guiding actions from moment to
moment, and needs to code information in a quick, ephemeral and view-specific form.
The posterior parietal cortex is a major locus of the dorsal stream, with  growing evidence
for several modality specific visuospatial coding systems; for example, separate systems
for the eye and the hand to reach to the same visual location.

Both streams are driven by the retina, proceeding through lateral geniculate
nucleus (thalamus) to primary visual cortex (V1, also called striate cortex; area 17 in cat).
Beyond this point, the streams separate, with the ventral stream terminating15 in
inferotemporal (IT) cortex.  The following diagram illustrates this flow, along with the
connection to thalamic and brainstem regions; note that reciprocal connections between
adjacent pathways and subcortical regions are present:

                                                  
15 It is somewhat misleading to speak of the stream as “terminating”, given the multitude of
recurrent pathways; however, it is conventional to consider ascending (sensory) pathways and
descending (motor) pathways, and this is arguably the last stop in the ascending pathway.
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Fig. 10.   Connections  in the ventral pathway. From Van Essen, D. C., C. H.
Anderson, et al. (1994). Dynamic Routing Strategies in Sensory, Motor,
and Cognitive Processing. Large-Scale Neuronal Theories of the Brain.
C. Koch and J. Davis. Cambridge, MA, MIT Press: 271-299.  Reproduced
with permission of MIT Press.

 From V1, areas V2 and V4 perform further processing of form.  V2 is known to
be involved in contour completion; neurons have been shown to respond to illusory
contours.  V4 has recently been implicated in processing of contours; many cells showed
preferential responses to certain classes of spiral, concentric, or radial forms (Gallant,
Braun et al. 1993).

 IT cortex encompasses posterior inferior temporal (TEO, pIT) and anterior
inferior temporal (TE, aIT), which has a number of subdivisions including the superior
temporal sulcus (STS).  Of course, these have connections to non-visual areas.  IT cortex
has strong reciprocal connections to the amygdala (associated with reward systems and
with social and emotional cues), connections to hippocampus (via the entorhinal cortex)
and to prefrontal cortex.  These connections are shown in the following figure; again
reciprocal connections between cortical areas are the rule.
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Fig. 11.   Flow of information in subregions of IT cortex and connected
cortical areas.  pTE and TEO are implicated in processing of features,
while aTE (anterior) is implicated in visual memory (ER = entorhinal,
HIP = hippocampus, PFC. = prefrontal cortex).  Connections to
subcortical areas are not shown.  Arrows represent reciprocal (feedback
as well as feedforward connections).  From Nakamura, K. and K. Kubota
(1996). “The primate temporal pole: its putative role in object recognition
and memory.” Behavioral Brain Research 77: 53-77.  Reproduced with
permission of Elsevier Science.

One important aspect of the ventral stream is increasing receptive field sizes, as
determined by classical single unit measurements.  The following table adapts
information from (Wallis 1994) and Rolls (Rolls 1992) on receptive field size and
functional characteristics.
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Table 2.   Receptive field sizes and characteristics of ventral stream areas.

area field width functional characteristics
aIT (aTE) 50° view independence
pIT(pTE) 20° view dependent,

configuration sensitive feature combinations
V4 8° orientation and form processing
V2 3.2° form, color, depth strips

illusory contour completion (32% of cells sensitive)
V1 1.3° orientation, frequency, location;

movement direction in complex cells

 Many neurons in IT fire at a slow spontaneous rate (3-4 spikes sec).  Some of the
research reported below emphasizes modulations in this firing rate above and below the
background.  A large literature exists on tuning properties evidenced by rate increases of
IT cells to preferred oriented gratings, Fourier descriptors, etc. and to specific objects;
many studies on preferential responses to faces exist (Rolls and Baylis 1986).  For more
in depth reviews of classical single neuron IT studies see (Rolls and Treves 1998) and
(Logothetis and Sheinberg 1996).  A review by (Nakamura and Kubota 1996)
encompasses single neuron data and a variety of clinical studies.

The following discussion presents a sampling of recent work, emphasizing
different approaches.  Not surprisingly, I focus on work supporting temporal patterns and
synchronization which underlie the computational approach developed in the next
chapter.

Temporal Codes, Multiplex Filter Hypothesis, and Cross-Correlation
In a series of papers, a view of temporal coding via frequency modulation (the

multiplex filter hypothesis) has been advanced by a group at U.S. National Institute of
Mental Health.  The earliest work (Richmond, Optican et al. 1987) examined single
neuron responses to Walsh functions, finding that information was conveyed by temporal
modulation of spike rates, based on an information theoretic comparison of principle
components with simple rate coding.  They suggested that multiple dimensions of a
stimulus could be decoded from principle components of the modulated spike train.  The
figure below illustrates the stimulus pattern and typical averaged response, with a set of
individual trials shown to give a feeling for the variability.
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Fig. 12.   The mean response of one neuron to two different Walsh patterns A
and B, with rasters from individual trials plotted.  Both excitation and inhibition
are seen, in agreement with data of Gochin and coworkers described below.  The
bar height represents 50 spikes/ sec. The bar beneath shows the stimulus duration.
From Richmond, B., Optican, L., Podell, M. and Spitzer, H. (1987). “Temporal
encoding of two-dimensional patterns by single units in primate inferior temporal
cortex.” Journal of Neurophysiology 57:  132-146.  Used with permission of
American Physiology Society.

 In more recent work recording from monkey TE (anterior) in a behavioral
matching task (Eskandar, Optican et al. 1992), the same group found evidence that
neuronal responses encode information about both the stimulus and the memorized target.
In addition, local functional differences were found, with more information on the current
stimuli in IT gyrus, relative to the superior temporal sulcus which appears to be biased
toward target (memory) information.  In concurrent modeling activity (Eskandar, Optican
et al. 1992), the output of a pointwise multiplicative model of  IT neurons was claimed to
be a good fit to the recorded responses, suggesting that these neurons multiply temporally
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modulated waveforms arising from separate visual and memory systems in the
comparison step of a visual memory task.

 Arguments Against Temporal Encoding
 Other researchers remain unconvinced by evidence for temporal coding in

inferotemporal cortex.  Tovee and colleagues (Tovee, Rolls et al. 1993); (Tovee and Rolls
1995) analyzed information available in varied short temporal epochs (100, 50, and 20
ms) of a 400 ms response series, and at different time offsets from stimulus onset.  Again
using information theoretic methods, they claim that 20 ms gives 30% of the information
present in 400ms; the specific 20 ms interval chosen has little impact.  More information
is available at the start of the spike train than at the end, based on their analysis.

 I argue that we should not be completely convinced by the latter demonstrations,
for the following reason.  If a cortical region is involved in the formation of a distributed
representation,   information about the stimulus must be present at the beginning of the
computation in at least a subset of neurons contributing to the distributed representation;
in fact, if the neurons participate in a meaningful way in the computation or are recruited
into the distributed representation, the peak information about the stimulus readable from
a single neuron should be available early, even though the code used by the organism is
distributed and might require some recurrent cycles to form.  Thus, the stimulus
prediction from an ensemble at a later time might still exceed the prediction that can be
obtained from a single neuron, for a wide variety of complex stimuli.  Methodologically,
the neural response needs to be measured on a behavioral task and correlated with the
response to know whether the observed coding is actually the one used by the organism.

 This is similar to the dilemma raised by Tsuda (Tsuda 1992), mentioned already
in the psychology review section.  It is unclear if different operational epochs for learning
and recognition exist, or whether both are occurring concurrently; activity supporting
both learning and recognition may coexist, but rapid task context shifts will activate the
effective connections that allow one or the other to dominate.  If  the system is capable of
rapid learning and forming representations we might always observe computational
artifacts of the representation formation process, even though the representation and its
decoding (readout)  are  distributed within the region or by interactions between regions.

 Combination Codes in IT Columns
 In a series of papers based on single neuron recordings (Tanaka, Saito et al. 1991;

Tanaka 1993) and more recently optical imaging (Wang, Tanaka et al. 1996), Tanaka and
coworkers examined the response of single neurons and trends in localized regions to
stimuli of intermediate complexity.  The methodology involves presenting progressive
simplification of images to obtain the exact combination of primitive features (within a
restricted object universe) which gives the maximum response over background rate.
The data supports a hypothesis of combination coding, that specific combinations of
features elicit responses in a small set of columns about .5 mm in area TE.  Some of the
optical experiments showed that  center positions of the active areas move systematically
with rotation of a face stimulus.
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 Tanaka acknowledges that critical feature columns cannot be the whole story, as
the feature combinations could only represent a portion of complex objects.  The spectre
of the binding problem is raised again; it appears in slightly different form for TE,
because the wide receptive fields will include multiple small objects, which must be
discriminated from each other while their component features are bound.  He raises
possible solutions compatible with observations, including aperiodic synchronization,
attentional enhancement, or the formation of loops of activity back to earlier stages in the
ventral pathway  (Tanaka 1996).  He also notes that the optimal stimulus paradigm is
based on a rate code assumption, but he has no evidence against the hypothesis of
temporal coding.

 

Fig. 13.     A schematic view of overlapping critical feature columns
hypothesized by Tanaka based on single neuron and optical recordings.
From Tanaka, K. (1996). “Representation of visual features of objects in
the inferotemporal cortex.” Neural Networks 9(8): 1459-1475.
Reproduced with permission of Elsevier Science.

Invariance vs. Broad Tuning to Specific Object Views
Logothetis and colleagues have examined single neuron responses to a variety of

objects rotated in depth, including paperclip stimuli similar to those used as recognition
targets in the present work (Logothetis, Pauls et al. 1994; Logothetis, Pauls et al. 1995;
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Logothetis and Sheinberg 1996).  They found that many neurons respond preferentially to
a single or limited range of views of objects.  Some responded both to a view and a near
mirror image, while others did not.  Tuning of the neurons to preferred views was found
to be fairly broad.  This data has been interpreted as evidence for RBF models as the
Chorus network described previously (Logothetis, Pauls et al. 1994); (Edelman 1999).
This is, of course, founded on the assumptions of rate coding and representation in single
neurons that guide the study; the substantial evidence contradicting these assumptions,
favoring temporal coding (or perhaps computation involving temporal modulations which
construct a code) and population representations, is not discussed in that review.

Activity During Delay Period in Matching Tasks
While the other work in IT cortex described so far involves examining responses

during the presentation of a stimulus, Miyashita and coworkers have studied the activity
in anterior ventral IT cortex during the delay period of a visual short-term memory task.
One of 100 possible fractal patterns is shown for 0.2 sec., followed by a 16 second delay,
with a second pattern shown for 0.2 sec. and the monkey required to choose “match” or
“no match”.  Sustained increases or decreases from background rates were found in 95 of
144 cells.  Of those, 77 showed variable frequency depending on the pattern, and many
showed strong activity to only a few patterns (Miyashita and Chang 1988).  Further
experiments showed learning was crucial to generating the delay response; also, that the
optimal response was often to rather dissimilar patterns, but substantial correlation in
responses between successively presented patterns was seen (Miyashita 1988).  Thus, it
seemed that learning produced a kind of temporal binding of observed patterns.  This is
not surprising, since objects are observed from a series of viewpoints (as an animal
moves around a stimulus or manipulates it) during the formation of a view-invariant
representation.

These observations lend support to some models of object representation in the
literature.  They have been interpreted by Griniasty, Amit and coworkers (Griniasty,
Tsodys et al. 1993); (Amit 1995) as evidence for the representation of objects as
attractors; they show similar temporal correlation in patterns presented to a symmetric
network with fixed point attractors.  These are presumed to correspond to different sets of
active neurons, but with correlations between successively learned patterns.  The Visnet
model of Wallis and Rolls (Wallis 1994); (Rolls and Treves 1998), is predicated in part
on a short term temporal association of different views, similar to the observations of
Miyashita.

It is less clear what role such delay activity should play in feed-forward
recognition models like Chorus, which to date have not addressed primed search or
matching tasks16.

                                                  
16 The Soca model advanced in this dissertation has also not yet taken on primed search in a
biologically realistic way, but I will attempt to sketch a strategy in the discussion section.
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Stimulus Inference From Ensemble Responses
Gochin et al. (Gochin, Colombo et al. 1994) found that 5 stimuli could be

inferred from a histogram of excited and inhibited responses of 40-50 cells in awake
monkey IT cortex.  The response was a rate integrated over the interval 100-500 ms post
stimulus, rather than instantaneous statistics as in the present model.  These results
suggest an ensemble coding interpretation in terms of histograms of numbers of excited
and suppressed units without regard to location.  They found that reducing the integration
window to 100 ms reduced correct inferences from the ensemble; this is in direct contrast
to the results noted earlier by Tovee and Rolls on stimulus inference from single cells,
which peaked in the first 100 ms.

Slow Oscillations Correlated With Stimulus
Nakamura and coworkers (Nakamura, Mikami et al. 1991) have observed

oscillations in the anterior tip or pole of the temporal complex (TPv) , including areas 36
and 38, (areas not mentioned by the other researchers surveyed here). Neurons in this
region responded to complex stimuli (photographs) but not to oriented bars. In the
context of a visual memory task,  the response of many neurons consisted of relatively
slow oscillations, in the range 3-28 Hz with most occurring in the range 4-7 Hz.  For
some oscillating neurons, the oscillation frequency varied with the stimulus presented,
i.e. 3.3 Hz for stimulus A, 5.6 Hz for stimulus B.

This finding is particularly intriguing in the context of the theory and algorithms
I present in subsequent chapters.  The computational model developed here identifies fast
oscillations with computation toward a certain goal (metricity over partition cells or
stimulus identity), and slow oscillations with modulations of synchrony; it predicts that
slow rates are one of the controlling variables which serve to define a dynamical
recognizer for a particular object.  In memory tasks, these oscillations could play a role in
modifying the response of local groups during comparison operations against incoming
stimuli, perhaps allowing the activation of those TE regions observed by Tanaka.

MECHANISMS AND ALGORITHMS: A SURVEY OF THE NEURAL MODELING

TERRAIN

The previous discussion focused on experimental methods and relatively data
driven theory.  I now turn to a brief discussion of modeling methods, many of which
proceed from a similar abstraction for the neuron and an assumption that it is the locus of
computation.

Modeling of neuronal processing is somewhat fragmented between various
disciplines and scales of modeling.  Some research is very application and mathematics
driven,  emphasizing proofs on the power and optimality of methods, with less regard for
correspondence with the data of experimental neuroscience.  Other approaches seek
correspondence with higher level cognitive data and psychophysics,  but not necessarily
data from electrophysiology studies.

Most contemporary neural modeling is carried out in one of four major styles,
with a certain amount of overlap between the camps.
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1.  Detailed electrochemical level models for neurons, including compartment
models of dendritic processes, scaling up to small networks.  Large networks (e.g. 104

–106 neurons) may be addressed through heroic parallel processing efforts.  Generally the
level of computation addressed is detection of features, or response to specific categories
of spike input.  These researchers would self identify as computational neuroscience.

2.  "Neuron" computing units with idealized transfer functions, with weights on
connections between neurons and possibly layers.  The neurons may be connected in
recurrent patterns, i.e. with direct or indirect feedback.   Researchers would in the main
identify themselves as connectionists or neural network researchers.  In most recurrent
networks, the end state of the computation is a fixed point attractor, hence the
overarching term attractor neural networks.  A new class of spiking network models has
emerged recently, with behavior and computational complexity intermediate between the
low-level models of computational neuroscience and connectionist models.

3.  Models based on similar assumptions about single neuron dynamics as the
first two categories, but typically with time delays, mixtures of excitatory and inhibitory
nodes, or other parameters which result in oscillatory behavior, possibly including
chaotic or other complex forms of oscillation. The literature of such models can be found
under the topics neural networks, computational neuroscience, mathematical biology,
biological cybernetics, and biophysics.  Since the computation and coding usually results
in dynamic or oscillatory states, these are sometimes called dynamical networks or
dynamical pattern networks.

4.  Oscillatory models with non-monotic or chaotic transfer functions defined for
neurons or large neuron groups, with the oscillating units connected in regular spatial
patterns.  Connections are usually modeled as coupling strengths rather than weights,
though in some cases these can function essentially as weights.  The transfer functions for
the groups may be more complex than the widely used sigmoidal activation.  The
concepts of excitatory and inhibitory connections often still appear, as in types 1. and 2.
This is something of an emerging research field; much of the publication is by
researchers in physics, centers for nonlinear dynamics and complex systems, and a few
centers of dynamical neuroscience.  In electrical engineering, the term cellular neural
networks (Chua and Yang 1988) is used for very similar networks, with a greater
emphasis on analog computation.

The style employed here is closest in spirit to the third and fourth types.  Both
types 3 and 4 have been described as statistical mechanics approaches.  Physicists
developed the statistical mechanics strategy for modeling large ensembles of similar
elements.  In this strategy, each state variable corresponds to the aggregate response of
many such elements,  and each parameter in a model may also capture in a single number
a quantity arising from a distributed set of objects.  For example, the bifurcation
parameters in the present models are interpreted as excitatory-inhibitory ratios or delay
time ratios of more detailed networks within each oscillating map site.  Connections
between sites or units at this level are not intrinsically excitatory or inhibitory, in contrast
to connections between single neurons.  The responses of populations should not be
thought of in terms of monotic activation, but are typically time varying; the distribution
of time varying response values over large population may be important.  Silent sites or
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sub-populations may play an important role in perceptual or cognitive functions.  This
concept of population coding has become well established in motor cortex, but has
advocates in the sensory and higher or associative areas.

These models can typically be related more easily to the experimental literature
of medium and large scale17 electrophysiology than those of the previous categories.
Population responses may not be detectable in the response of single neurons which may
not fire in every “cycle”,  and cycles will clearly be less evident in aperiodic population
responses.  Yet if nonstationarities in the response – evidenced by changes in correlations
and synchrony at multiple scales – play a computational role, the modeler can use such
changes as hints toward the type of nonstationarities likely to be effective in a task.  This
is the approach taken in the next section, where the linked observations of local aperiodic
oscillations and large scale changes in synchrony directly motivate the dynamics and
constrain the search space in a network.

NEURAL NETWORKS: AN OVERVIEW

I have now surveyed, albeit at a surface level, several research areas in system
level neuroscience.  As noted, there is often a reciprocal influence between theory and the
experimental observations; but so far much of the discussion here has been data driven.
Now I will turn to some discussion of neural modeling techniques and concepts.  The
goal here is to understand how these relate (or fail to relate) to the biology surveyed
above, and to situate the recurrent, time-varying chaotic networks that are the central
focus of the present work.

Activation Functions and Topologies
A network consists of processing units (nodes, cells) connected in some physical

organization or graph.  Certain typical directed graphs or topologies have been studied,
such as feed-forward networks with hidden layers and recurrent networks (i.e. acyclic
graphs), with feedback connections from a unit to itself or to a unit or units upstream.

Each unit performs an operation on one or more input signals, sending the
resulting activation function value to its output function.  While a wide variety of
functions have been studied, until recently the combined activation output dynamics have
been monotonic, i.e. the output function is strictly increasing with increasing (excitatory)
input.  This is viewed as a natural model of rate coding, with most computational power
deriving from weights on input connections, specific topologies, and learning or self
organization processes which update weights.  While units are disclaimed from
corresponding directly to neurons, it seems hard to escape the association of a unit with a
parallel pool which attempts to account for neuronal variability through averaging.

Historically, the monotic activation functions are not time varying functions on
the inputs.  Recently some models incorporate delay between units, with resulting

                                                  
17  By medium scale, I mean studies involving multi-channel spike studies,  arrays of local field
potential macroelectrodes directly on cortex or optical methods.  By large scale,  I mean studies
involving scalp recorded multi-channel EEG or multi-channel MEG.
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interesting effects on dynamics and spontaneous formation of assemblies.  Chaotic
behavior at the network level is one possible result.

Non-monotonic activations have also appeared in the literature.  When used as an
associative memory, non-monotonic networks have been shown to have increased storage
capacity compared to a comparably sized network with monotic activation (Yoshizawa,
Morita et al. 1993).

For recurrent networks, one recent trend in research has been to investigate the
computational power of particular mapping functions (Pearlmutter 1990); (Moore 1998),
in terms of the formal language complexity class they are able to recognize.  Holden and
coworkers proved that homogeneous diffusively coupled maps are less powerful than
Turing machines, and suggest that anisotropy (in connections, coupling, or evolution
rule) is needed to increase the computational power  (Holden, Tucker  et al. 1991).  These
spatially distributed maps are the architecture I extend to nonstationary or staged
operation in a subsequent chapter; I am unaware of any similar investigations on the
recognition power of homogeneous but nonstationary networks.

Weights and Couplings
The numeric values which propagate between nodes are scaled by weight values

in typical networks;  this naturally corresponds to ideas that learning takes place in rate
coded networks through slow modifications of synaptic efficacy (effectiveness).  Many
models have also incorporated a concept of fast synapses, with rapid adaptation of some
or all weights in a network based on input or correlations in the network.  Such fast
synapses are important in the formation of dynamic assemblies and correlation coding.

In networks with non-monotonic functions, similar scaling takes place on the
inputs to units.  However, since small positive or negative changes on inputs may lead to
changes in the output of the opposite sign, the term weight is less appropriate.  The term
coupling often appears instead, but conventions for mathematical notation for weights
and couplings are interchangeable.

Learning Strategies
Learning strategies are chiefly divided into supervised and unsupervised types.

In supervised learning, the desired output state of the network is known, and a teacher
signal must adaptively modify weights or other network parameters to match the output
state by an error minimization process.  In unsupervised learning, the output state or
encoding of an input pattern is not dictated by the network designer, but is arrived at
through some means such as satisfaction of competitive constraints, or correlations
between previously activated paths and those activated by the current input.

Representation and Coding
A sparse code implies that activation of only one or a few output units is

significant.  Distributed codes imply that the values of all output nodes are important.  A
code is fully distributed if the values of all output units must be known, i.e. the
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distribution of activities is balanced for all possible encoded values.  A code may be both
sparse and distributed, when the percentage of units active for each separate coded
element is much smaller than the total.

The term population code appears less frequently in modeling, but has been the
subject of some interest in experimental work and associated modeling. A population
code is distributed code in which the statistics of the population response code the
information about stimulus or the result of some computation, but not the activation
patterns of particular output neurons.

Functional Classifications and Putative Biological Roles
Apart from the basic distinctions on the basis of activation functions, topologies,

and of learning and coding styles, artificial neural networks have been categorized on a
functional basis.  Rolls (Rolls and Treves 1998) describes several functional families and
considers their plausibility as biological models; there is considerable overlap with the
learning strategies.  He also gives a set of constraints on plausible models for cortical
computation, based on anatomical criteria and psychophysics.

Pattern association networks use supervised learning. A particular input pattern
presented to the network gives a response through a feed-forward topology. A supervised
learning techniques (e.g. back-propagation of error) usually updates weights in layers
somewhat removed from the output stage where readout occurs. Rolls sees little
biological role for such networks, as they violate the local learning principle of his
cortical constitution: all factors determining alterations  in synaptic weights to implement
learning are present in the pre-synaptic and post-synaptic firing rates of each neuron.

Autoassociative networks perform pattern completion.  After training,
presentation of a partial or noisy pattern will recover the original trained pattern. These
networks are also called attractor neural networks, with the Hopfield network the earliest
and best known example.  A large role for autoassociative networks, particularly for
episodic memory, is envisioned.  Specific brain regions which have been proposed to
function in this manner are the hippocampus CA3 region and anterior inferotemporal
cortex (Miyashita and Chang 1988).   An important issue for the biological validity of
attractor networks is the time required to reach an attractor (convergence time); according
to the analysis presented by Treves and Rolls, biological networks might reach attractors
as rapidly as  20 ms.

The third major functional type of network are competitive networks.  The Self-
Organizing Map and Radial Basis Function (RBF) networks are included under this type.
Differential connections  or initial weights distinguish input-output pathways; the
competitive aspect of the network results from strongly activated output neurons
inhibiting others.  In the Self-Organizing Map architecture , associative modification of
active inputs to active outputs occurs during presentation of a pattern, increasing the
chance of future activation of an active set with similar patterns.

The RBF network is a hybrid type with a competitive hidden layer (but not
winner take all) feeding an output layer using supervised learning.  Each hidden layer
unit has a Gaussian activation function,  giving a maximum response when an input
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vector is centered at its weight vector.  In his review, Rolls suggests that it is not clear
how Gaussian activation would be implemented biologically; however, recent
investigations of spiking networks indicate that  spike arrival times can  implement such
Gaussian units, and local learning based on pre- and post-synaptic firing times is possible
(Natschlager and Ruf 1998).

This concludes the list of network functional types surveyed by Rolls.  He alludes
to the observations described above on oscillations in visual cortex  and theories of
feature linking, but generally dismisses the binding hypothesis on the grounds that
synchronization processes would be too slow.  His analysis assumes that direct
communication is required for synchronization.  However, in the next chapter I will show
that, given a regular spatial arrangements of coupled chaotic oscillator units with uniform
parameters, synchronization may occur without direct connection between units simply
by deterministic dynamics tending toward synchronization, operating on similar local
configurations  (i.e. oriented lines or contours) in the stimulus space.

 While the three artificial network types presented map well to distributed rate
code theories, I have emphasized other temporal and population coding strategies, with
evidence for their existence in cortex presented.  A correspondingly rich variety of
additional oscillatory or dynamic neural network models have been proposed by others,
which align more with ideas of temporal, population codes.  I now briefly survey some
early oscillatory models and will focus on a few in more detail in the next chapter.

DYNAMICAL NETWORKS: OSCILLATIONS, CHAOS AND EXOTIC ATTRACTORS

Particularly since  the recent experimentally driven interest in synchronization
and modulated synchronization, computational studies of  many types of  oscillatory
networks have been performed; recent workshop volumes include (Taylor and Mannion
1992) and (Brown, Levine et al. 2000).  Different authors vary in their emphasis; some
focus on mathematical properties, others on biological realism,, still others on modeling
of perceptual and cognitive phenomena.  I will emphasize modeling of perceptual
phenomena with oscillatory networks in the following chapter on dynamics and methods;
here I will note a few significant early efforts and surveys.

In an early modeling paper motivated by the experimental observations of
synchronized oscillations mentioned above, Mannion and Taylor discuss both binding
and separation of bound objects with oscillations, outlining parallel and serial strategies
for separation.  Separation refers to the need to handle multiple bound objects in parallel.
The parallel strategy involves separating objects by frequency, while the serial strategy
involves time slicing the activity of objects (i.e. phase separation).  They indicate that
little biological support for the frequency strategy (without specifying what prior studies
support or fail to support any segmentation strategy).  Developing a firing rate model
with a regular spatial array of units producing sinusoidal oscillations, they demonstrate a
serial strategy of alternating phases (Mannion and Taylor 1992).

Grossberg, a pioneer of many network architectures for specific psychological
phenomena, published an early article on feature-linking with synchronous oscillations
[Grossberg, 1991 #6].  The next chapter will discuss several more recent variations on the



69

theme of synchronization and segmentation of scenes. For now, I turn to other oscillatory
models emphasizing memory formation and perception.

Freeman and colleagues have implemented and refined over time a detailed,
multiple-scale network model called the KIII model;  they have validate the model with
experimental results obtained in rabbit olfactory cortex and rats.  The base organizational
units are the K0 models for neural mass, having excitatory or inhibitory output.  A K1 set
consists of mutually inhibitory or mutually excitatory pairs.  These are incorporated into
KII sets with both excitatory and inhibitory elements.  A KII set corresponds to the
activity of a recognizable anatomical unit in the mammalian olfactory system; the
olfactory bulb, anterior olfactory nucleus, and prepyriform cortex are separate KII sets.
Finally, a set of KII sets are connected in a regular spatial arrangement with feedback
pathways incorporating delay to make the KII model (Yao and Freeman 1990); (Kay,
Shimoide et al. 1995).  The architecture results in spatiotemporal patterns qualitatively
similar to those observed in the olfactory system.

The Freeman group has historically employed numerical integration of ordinary
differential equations as a modeling technique; a recent reformulation of the model to the
discrete space and time, coupled map style was undertaken (Kozma 2000).

The olfactory system differs considerably from visual cortex of course, notably in
the lack of spatial structure in the input transducers.  Other investigators have explored
the interaction of chaos, synchronization, and orientation sensitive structure at a similar
modeling granularity (i.e. the detailed neuronal models of computational neuroscience).
In a model with neurons of various orientation preferences in local pools with long range
excitatory coupling to other pools, Hansel and Sompolinsky established first the
important characteristic that synchronization between neurons of similar orientation
preference could occur in a few cycles (Hansel and Sompolinsky 1992).  In later work
they have introduced inhibitory connections and modeled orientation tuning effects in a
visual cortex hypercolumn (Hansel and Sompolinsky 1996).  That model exhibits time
varying orientation sensitivity and spatio-temporal excitation of intermediate neurons
when instantaneous changes to the input stimulus orientation are made, matching effects
seen in cortex .

 Tsuda developed a network displaying complex, non-equilibrium temporal
behavior during the recognition or memory recall dynamics, and postulated many
possible cognitive functions for chaotic dynamics (Tsuda 1992).  He has more recently
used the term exotic attractors to distinguish these from fixed point or periodic
oscillatory attractors.  In his model, a Hebbian learning stage establishes attractors in the
network based on intrinsic phase correlations arising from input stimulus vectors.  During
recognition, presenting one such learned pattern to the network through an alternate
pathway  causes it to cycle through the previously learned attractors in a pseudo-random
order, with spurious transitional states between visits.  This dynamical behavior serves to
semantically link previously memorized attractors into more complex combinations,
providing an alternative means of binding component perceptions into a composite
memory.  Compared to the binding by synchronization proposals, Tsuda’s network seems
to have attracted less attention and criticism; this may be in part because the concepts and
dynamical behavior are unfamiliar to many experimentalists.
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SUMMARY

The various threads of research introduced above form a network of interrelated
issues, but were selected to underscore the following points
1. Neurons and local fields exhibit complex oscillatory behavior and synchronization

phenomena.  These may be involved in computation and coding, in contrast to
computation and coding with rate coded and modulated “activity” networks.  Using
such dynamics in support of algorithmic processing is a relatively new field, relative
to more established connectionist models employing the rate code assumption.

2. At neural and larger scales, “stages” of processing within the same regions and local
circuits are seen, in contrast to serial presentation from one computational stage to
the next.  These are evidenced in several ways, from changing amounts of
information seen in different time windows, to differences in sensitivity based on
context, and changes in correlation structure.  Interpretation of functional roles for
such stages is not very advanced.

3. Stages may be related to changes in the correlation structure observed in signals at
different scales and in the synchronization measures of larger scale (inter-regional)
networks.  This provides a new way of interpreting the interactive role of multiple
regions observed in imaging in contrast to a serial presentation.

4 . Oscillatory behavior may be aperiodic, which is characteristic also of coupled,
spatially distributed chaotic dynamical systems.  The study of networks of chaotic
units is relatively new, but shows promise for modeling aperiodic oscillatory
phenomena.  Synchronization increases with increased coupling of such systems.

5. Stages may be related to major operating rhythms; in the view of Basar (Basar 1998),
major operating rhythms (theta in prefrontal, alpha in occipital visual areas) control
the evolution of the faster bands.  In agreement, I further suggest that this control
may be interpreted in terms of changing control parameters of nonlinear oscillator
arrays to perform specific computations.  The computations often involve changes in
dimensionality corresponding to desynchronization and synchronization.  This is in
contrast to classical gating, excitatory, and inhibitory control architectures.

6. Retinotopic maps of organized columns are the regular organization seen widely in
cortex.  Network models of object recognition such as Chorus do not map to this
organization, instead using retinotopic arrays of feature detectors as a front end to a
specialized structural network.  The model here uses a regular array of units to
perform a task traditionally considered part of high-level vision.

The network style described in detail in the next chapter, coupled map lattices, is
a relatively new (Kaneko 1986) approach to modeling spatially extended physical
systems, of the type classicaly treated with partial differential equations.  In this emphasis
on spatially adjacent nodes it differs from some connectionist models, which do not have
a regular, localized spatial structure similar to the columns and hypercolumns of cortex .
By using discrete time iterations rather than differential equations, the couple map style is
closer to recurrent attractor networks in connectionism than to the detailed “small circuit”
dynamics of computational neuroscience.

Because of the computational cost, detailed small circuit models are often limited
to reproducing spike level input output, rather than approaching perceptual and cognitive
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phenomena.  The efficiencies of coupled map modeling allow a direct attack on
perceptual problems, while retaining many characteristic aspects of biological neural
systems and signals.  The gap between Marr’s algorithmic and implementation levels is
reduced, though the neural modeler still bears the burden to justify a particular map, like
the chaotic function used here.

   Two additional differences with most previous work in similarity and object
recognition are in the relevant site of encoding in the network, and the nature of the
dynamics involved in the encoding.  The  feature detector class of neural models use what
has been called place coding, locating meaning in the firing rate of particular neurons.
This leads to the well-known binding problem and combinatorial difficulties representing
the large feature space.

Connectionist  models use a distributed representation, typically sparse
distributed coding across a vector of output units.  Still, the individual units are
significant (local or place coding) and the activation or encoding is usually sigmoidal.
Further, the network dynamics at the end of a recognition process are typically a one shot
response, or a stable attractor controlled by the network parameters (connection weights).

In this thesis, I use a population encoding across an array of chaotic units.  This
encoding is in accord with the data and interpretations of Gochin et. al., with the chaotic
dynamics of the units resulting in aperiodic (frequency modulated) time series,
resembling their observations, along with the single neuron “temporal codes”
observations of Richmond et. al.  Thus, there is some correspondence between the model
presented here and observed micro-circuit dynamics in IT cortex.

However, the correspondence between the Soca network and function of IT
cortex cannot be taken to be a literal one.  The current encoding involves sampling of the
transient orbits of a nonlinear evolution process across the entire network at a particular
time in a structured, non-stationary dynamics.  While such an instantaneous population
rate code is envisioned in Bullock’s list of possible codes, the readout and comparison
methodologies used here are very un-biological.  In my recognition system, the statistics
of this sampled state are numerically compared with other such samples statically stored
in memory by conventional digital, algorithmic procedures.   Such an instantaneous code
must be seen as an input to some other readout or memory formation process in a
biological system.


