Hypertext in the Open Air: A Systemless Approach to
Spatial Hypertext

Jim Rosenberg
555 Davidson Road
Grindstone, Pa 15442
E-mail: r@amanue.com

ABSTRACT

This paperpresents personakpatialhypertextauthor

ing systemcalled The FrameStackProject,implemen

ted asa lightweight setof classesn the genericobject
frameworkMorphic, availablein the programmingen

vironmentSqueakMorphic providesa kind of off-the-

shelf toolkit of objectsand behaviorsextremelyrelew

antto spatialhypertext.In this project,run-timevs. au

thoring behavioris a state property of individual ob-

jectsin ahighly granularway. A key goalis the sup

port of feral structure,in which objectscan be created
looseon the desktopwithout assigninghemany struc

tural destination.This providesan implementationof

aninteractiveversionof the poet’snotebookThe gran

ular approachto objectauthoringsupports‘interactive
writing” in the truest sense of the word.

INTRODUCTION

This paperpresentsaan ongoingprojectcalled (loosely)
The Frame Stack Project. The term ‘frame stack’ de-

scribesan interfaceconceptwhich | have beenusing
for a numberof years,and have describedpreviously
[9]. It providesa userinterfacefor overlayingword ob-

jectsontop of oneanotherwhile still allowing themto

be read legibly. In the past, “frame stack” has been
moreof a conceptuahrtistic frameworkthanan actual
implementationuntil recentlyit would not havebeen
possibleto examineany of my finishedworks and un-

cover actual objectsidentifiable as frame stacks.This

paperdescribeghe implementationof the frame stack
conceptas actual working code. It hasresultedin a
kind of personakpatialhypertextauthoringsystem put

of asomewhadifferentkind thanusual.Ratherthanan
“application”, within which spatial hypertextdevelop

menttakesplace,the FrameStackProjectconsistsof a

lightweight setof classeghatoperateswvithin a generic
objectdesktop.This allows word objects— complete
with interactivebehavior— to be simply “loose on the
desktop”— a conceptdiscussecelow asferal struc-

ture. Feral structureis closely relatedto the classical
philosophyof spatialhypertext:thatthe usermusthave
theability to postponecreationof structure The specif

ic structuraloperationwhichis postponedn the caseof

a feral objectis parenting. Accreting of “parentless”
objectsis a methodof facilitating, in software,a time-

honoredcentral part of poetic practice:scrapcollect
ing. Most poetskeepsomeform of notebook,n which
scrapsare accumulatedpften without any clear idea
whatthe ultimate destinatiorof the scrapwill beatthe
time it is first written down. A scrapis thus aninher
ently parentless object.

The genericobjectframeworkwithin which the Frame
Stack Projectis realizedis called Morphic [12] (dis-
cussedelow), andis providedoff the shelfin the pro-
gramming environmentSqueak[3]. Of courseit is
somewhatdisingenuousto describethis approachas
“systemless”’— after all Squeakcould certainly be
considereda system. But can it be considereda
“hypertext system”?Most researchersvould probably
agree this would be a stretch.

MORPHIC

Morphic is a userinterfaceparadigmproviding a wide

variety of graphicalfacilities. A “morph” is aninstance
of the classMorph, or one of its subclassesMorphs
cancontainother morphs;whena morphis movedon

the desktop, its submorphsmove with it. When a

morphis selectedoy a mouse-ugombinedwith a key-

board modifier (which dependson the operatingsys

tem) — e.g. “command-click” on the Macintosh— a

set of icons called a “halo” appears.(See Figure 1).

) @ & (o)

@)
® ﬁ'f@&furnel
?&%ﬁi deliric-us
@ diine ess 9
®
Framestack
Figure 1

A set of icons called a “halo” is popped up surrounding
a morph by clicking a morph with a keyboard modifier.
These icons provide a user interface to standard
morphic behavior for any morph.

The halo mechanismprovidesan interfaceto a set of

genericbehaviorsof all morphs,which subclasseare
free to overrideif necessaryAmong thesebehaviors
are: moving, pickup, resizing, menu,iconify, and de-

lete.

Pickup

Whena morphis picked up, e.g. by draggingthe top
middle icon fron the halo, this meansnot only moving
it, butin additionwhenthe mouseis releaseddropping
it into a targetmorph, so that the morphbeing picked
up becomesa submorph of the target. However,
morphsarefreeto rejectdrops.lt is interestingto con
trastthis conceptwith the way that aggregatiorworks
in familiar spatialhypertextsystemssuchas VIKI [8]

to thelargermorph.l.e. in the versionof Morphic used
for this projectthereis poor visual identificationof the
target of a drop.

Event Handling

An instanceof a subclasof Morph can“register” with

the Morphic eventhandlingsystemthatit wishesto re-

ceive events,suchase.g. mouseEnterln this casethe
objectwill be senta mouseEntemessageThis allows
any morph to createits own userinterface behavior.
There is an important point here. Unlike complex
paradigmssuch as the Model View Controller para

digm [5], a userinterfacedesigneremployingMorphic
needonly subclassat a single point in the classhier-

archy.Thus,to createthe classFrameStackt wasonly

or VKB [10]. VKB, for instance, provides a mechanism necessaryo subclassRectangleMorphAn MVC ap

calledCollections.In orderto aggregatespatialobjects,
they are placed“into” a collection. A bit of text, by
contrast,'isn’t” a collection;in VKB a text objectis a
“terminal node” in the structure,and cannothavesub
objects.Morphic, on the other hand,assumeghat (1)
any objectmay containsubobjectsand (2) the decision
whetheror not an object should contain subobjectss
made “on the fly”. (To a poetthis means:one can
changeone’s mind about this!) l.e. for a morph to
changestatein eitheracceptingor rejectingpickup, or
to containor not containanothemmorphasa submorph,
is not a changeof class.By contrast,if a phrasein
VKB is treatedasan “object” (terminalnode)andthe
documeniauthorsuddenlydecideghis phraseneedsto
havesubobjects,’changing” the phraseso this is pos
sibleis avery heavy-weightactivity. The usermust(1)
createa new collection; (2) copy the phraseinto the

title of the collection, (3) delete the original phrase. The

Morphic conceptof submorphsmay be said to be
closerto the spirit of spatialhypertextthana structural
conceptlike collections,in thatthe decisionwhetheran
objectis to “have” subobjectscan be postponed(As
we speakrepeatedlyin spatial hypertext discussions
aboutpostponingtherealizationof structurejt mustbe
emphasizedhat at the momentwhenstructureprocras
tination ends, conversionto structureneedsto be as
light-weight an activity in the userinterface as pos
sible!)

Morphic makesa distinction betweena morph ac
cepting drops and a morph containing submorphs.
Rejectingdropsis considereda userinterfaceproperty;
howeverall morphscontainthe mechanismeededto
containsubmorphsandevenif a morphrejectsdrops,
submorphscan still be addedprogrammaticallyby a
Smalltalkmethod.It shouldbe notedthatMorphic does
contain one serioususer “hazard”: if a morph is en
abledfor receivingdrops(in orderto “build it up” in-
teractively), and then that morph becomes‘finished”,
the usermay forgetto turn off acceptancef drops.If
this morph becomesembeddedn a larger morph, it
may “attract” a drop thatthe userthoughtwasgoingin-

proachwould require subclassingat three places:for
the model, view and controller. Smalltalk presentshe
novicewith a gordianknot learningproblem:whereto
subclassMost programmerdearna new languageby
writing code. But in Smalltalk, one cannot simply
“write a program”; all codemustgo into classesand
one cannotknow where one’s classshouldgo in the
hierarchy without learning the hierarchy, which one
can’t do without learning Smalltalk ... The geniusof
Morphic is that it providesa readysetof classesavaik

r. by |
4 FrameStack
zend to back
bring to front
embed inta
change colar...
border stvle...
drop shadow
lavout

halo actions...

resist being Jeleted
rezizt being picked up
te locked

provide clipping
direction handles
accept drops
round corners
copy & prift..,
zitlings...

EXpOrt...

stacks and cards...
extras...

detug...

stop plaving

zhow border

accept kevstrokes
reframe

retain reframe order
L1:|1E|L1=:E Jdead zohe

w

T Tw

Ooooooog

e e

Figure 2

The standard morph menu for a frame stack. Note the
“custom methods” at the bottom. Methods above “stop
playing” are inherited from the superclass, and ulti-
mately mostly from Morph.

ablefor subclassingvhosefunctionis completelyintu-
itively clear. E.g. it wasintuitively obviousthat some
of the important classesfor this project neededto be
subclasses of RectangleMorph.

Menus

A morphinheritsa “standardmenu”, but the program

mer creatinga Morphic subclasscan easily customize
this. This providesan easymethodto attachan inter-

faceto one’sown classesFigure2 showsthe menufor

the classFrameStackThe entriesat the bottomcorres

pond to custom methods.E.g. reframe — the most
complex piece of code in this project — tells a

FrameStacko abandonits existing frames,makenew
onesfor eachof its submorphsandresizeitself appro

priately.

It is alsoworth commentingn moredetailon themenu
choiceseenin Figure 2 “start playing”. When a frame
stackis “playing”, asthe mouseentersits boundary,
theframesfor thesubmorpharemadevisible, andone
of the submorphss selectedat randomto be on top.
The frames are opaque white, and are active
mouseEnteregions.As the mouseentersone of the
frames,it andits designatednorph are broughtto the
front, makingthemvisible. Whenthe mouseleavesthe
boundaryof the framestack,all of the framesaremade
invisible. Whenthe framestackis not playing, it is im-
perviousto mouseEnterin effect,“playing” constitutes
the run-time behavior of the frame stack object. The
point hereis that unlike environmentdike Flash|[6],
where authoring and run-time behavior are so com
pletelyseparat¢hattheytakeplacein separatepplica
tions (with widely divergentkinds of licensing!) in
Morphic a distinction (if needed)betweenauthoring
and run-time behaviorcan take placein a highly dy-
namicgranularfashionasa stateof individual objects.
Run-timebehaviorfor anobjectcanbe“left on” until it
“getsin the way”; at that pointit canbe turnedoff for
that individual object. This subjectwill be discussed
further below.

STRUCTURE VS. PRESENTATION

It is customaryin hypertextthat structureand presenta
tion shouldbe separatedi-ollowing a link is a structur

al operation.Theremay be a wide variety of ways of

presentingthis operationto the user, eventhoughthe

structuraloperationis in eachcasethe same.In spatial
hypertext,however,we take a different point of view.

Presentationis what “replaces” structure at a point
wheretheuseris not willing to committo structure Or,

to put it somewhatdifferently, “spatial structure” and
presentationare inseparableThus for instancewhile

“nearby” is a presentationproperty, it is of essential
importancein replacinga structuralconceptin spatial
hypertext.Morphic providesa readystock of presenta
tion abstractionsvhich canbe usedby spatialhypertext
objectsasa kind of off-the-shelftoolkit. In this section

we review some of them.

“The Front”

Morphic providesa “layering order”; it knows which
objectsare in front of other objects,and can render
them appropriately.A morph can be broughtto the
front or sentto the back. This operationdoesthe right
thing regardingthe submorphhierarchy.E.g. sendinga
morph to “the back” sendsit behind all other sub
morphsof the sameparent,but doesnot sendit behind
its owner. The presentationconcept of bringing a
morphto the front can substitutefor the structuralop-
erationof “navigatingto” the morph.For instancecon

sider a “card interface”: to the user it appears that she is

navigatingamonga setof cards,which containvarious
objects.Someof theseact as buttons,which take the
user to other cards. Provided the “bottom layer” of
eachcardis arrangedto be opaque this interfacecan
be implementedn Morphic by having eachcard be a
rectangulamorphof the samesize and sameorigin in
the coordinatesystemandthen “navigating to” a card
by simply bringingit to the front. Technically,the user
is “at” all of the cards(at once)but from the point of
view of userexperiencethe only cardthatis visible is
the one on top (at the front, in Morphic terminology).

Using the ability to bring objectsto the front asa sub
stitute for structuralnavigationcan have sometricky
consequencesustasan interfacecansuffer from con
tentionover screernreal estate therecan be contention
for the front. For instance whenbringingup a haloon
a morph, an inconvenientlyplacedframe stack which
is playing may bring a frame in front of a halo.

Visibility
Hiding an object or making it visible is anotherway
thata presentatioroperationmay substitutefor a struc
tural navigation.Again, Morphic providesthe ability to
hide or showany morph. (It is surprisingthathiding of
objectsis not an operationcommonly supportedby
spatial hypertext systems.)

IMPLEMENTATION SPECIFICS

The hierarchyof classescreatedfor the Frame Stack
Projectis shownin Figure 3. The amountof codein

theseclassess sosmallthatit is analmostinfinitesim-

al fraction of the corpusof Squeak/ Morphic. | offer
this not asan apology,but ratherastestimonyto what
canbe accomplishedy anindividual cybertextauthor
using the “open-air subclassing’approachon top of a
rich generic object framework like Morphic. The
FrameStackinterfaceis particularto my own artistic
practice; other writers will have drastically different
needs.t is unlikely that very many cybertextauthors
will find the FrameStackProjectcodedirectly useful;l

amoffering it moreasakind of living exampleof what
can be accomplished using this method.

(Array)
FrameStackRectArray

(Form)
FrameStackGlyphs

(PasteUpMorph)
FrameStackCard

(RectangleMorph)
FrameStack
FrameStackFrame
FrameStackRectangle

(SketchMorph)
FrameStackSketch
FrameStackScope
FrameStackThumbnail

(TextMorph)
FrameStackText
Figure 3
Class hierarchy created for the Frame Stack Project.

Classes shown in parentheses are off-the-shelf classes
provided with Squeak.

In the following section,someof the key classesmple-
mented in this project will be described.

FrameStack, FrameStackFrame
FrameStackis the “signature class” from which this

project takes its name. A frame stack is an object with

rectangulaboundaryanda collectionof submorphgor
which the frame stackactsasinterface.The goal is to
provide an intuitive interface by which transparent
word objects can be overlaid in the same space—
which would normally renderthemillegible — and al-
low individual objectsto be readby a set of opaque
“frames” that are controlledby mouseEntehot-spots;
each frame correspondsto one of the word objects.
These frames are implemented by a class called
FrameStackFramé&he submorphdor which theframe
stackactsasaninterfaceare not “specially” designated
in any way; a frame stackidentifiestheseasany sub
morph which is not a FrameStackFramelhus a new
submorphcanbe addedusingany meanssupportecby
Morphic, without requiring any special code in
FrameStackl.e. “authoring” a frame stackis assimple
ascreatinga newempty FrameStacKusingthe Squeak
desktop“new morph” menuentry), turning on “accept
drops” in the FrameStackand then dropping morphs
into it.

In the currentimplementationa frame stackis “refor-
matted”for a changeto its submorphpopulationby an
explicit reframemethod.(Futureversionsshouldprob
ably do a reframeautomaticallyin responseo various

relevant events.) The reframe method, which was easil

the most complexin the whole project, discardsany
existing FrameStackFrameubmorphsandthenrecre
atesthem, sizing themto their designatedsubmorph;
the boundary of the frame stack itself is also resized.

In addition to controlling whether a frame stack is
“playing” or not (discussedabove), anotherbehavior
implementedby FrameStacks a “freeze”. Normally
whena framestackis told to stopplaying, it will bein
a “closed” state.(All frame stackframesareinvisible,
so that all the other submorphsare visible and appear
overlaid.)If oneof the submorphseedsto be edited,
havingthe frame stack continueto play will interfere,
but the “layer” with the given submorphneedsto be
“open” sothe submorphis easilyaccessibldor editing.
Becausethe mouse is already used to “navigate”
amongthe submorphof a framestack,the keyboards
usedto register a freeze. When initially created,a
frame stack doesnot acceptkeystrokesbut it can be
told to do so.Onceacceptingkeystrokeswhena frame
stackis sentthe‘f’ keyfrom thekeyboardijt freezesn
its currentstate.This allows the submorphfor thelayer
showing to be editenh place. (Typically editing occurs
using off-the-shelfbehaviorof Morphic; e.g.if the ob-
jectin questionis text, it may be editedusing custom
ary text editing mousemovesand keystrokes.)This is
consistentwith a deeply held philosophyof this pro-
ject, that authoringvs. run-time behaviorshould be a
statepropertyof individual objects, not of “the system”
or “environment” as a whole.

rameStackRectangle

his classis usedto implementgrouping.An instance
of this classis a transparentectangulamareawith vari-
oussubmorphsit is neededasa specific classmainly
to allow groupingin sucha way thatthe mouseevents
are properly passedthroughto any frame stack sub
morphs.

FrameStackCard

The actual cybertextsso far realizedin this environ

menthaveusedan “outer interface” extremelysimilar
to the original card interface provided by HyperCard
[2]. This interface assumesa non-scrolling fixed

“portal” which doesnot move on screen;asthe reader
movesthrough the piece the contentof this portal is

changedIn the FrameStackProjectthereis no formal

conceptof portal. Rather,its appearancés createdby

the cybertextauthorcreatinga setof frame stackcards
which are all of the samesize and position on the
screen.This classimplementsa parent-childrelation

ship among frame stack cards, using methods
seekParenand acceptChild. When a frame stackcard
receivesaaceptChild,a buttonis createcthatwill bring

the child to the front when clicked; the button is a

thumbnailimage of the child. (At the child thereis a
methodthat will setthe magnificationscalefor creat

i)pg this thumbnail.) An “up-button” is createdon the

child, that when clicked will bring the parentto the
front.

Consistentwith anothermajor philosophyof this pro-
ject, a frame stackcard may haveno parent.(Thereis
also a method of FrameStackCardccalled unparent,
which will deletethe parentrelationshipand rendera
card parentless.)

FrameStackCari$ a subclasof animportantMorphic
classcalled PasteUpMorphalsoknown asa playfield.
This classis the basicform of Morphic “canvas”,and
provides many facilities for graphical editing. The
Squeakdesktop(known asa “world”) is in fact a play-
field.

Fonts

Fontsarean extremelytricky issuein any discussiorof

cybertextauthoringsystemsilt is customaryamonghy-

pertext system designersto assumethat fonts are
someoneelse’sproblem; e.g.the native operatingsys

tem windowing systemis presumedto provide fonts,
the usermay havefonts of her own, etc. Scalableout

line fonts,suchasTrueTypeor PostscripfType 1 fonts,
area form of intellectualpropertysubjectto their own

systemof rights. A cybertextauthorwantingto control
theexactappearancef the text is thusconfrontedwith

a difficult dilemma: embeddingfonts in a cybertext
may createunpleasantights problemsfor distributing
the cybertext. Technologiedike Flashseemto allow

distributionof cybertextswith embeddedontsin ways
that have apparentlyavoidedthis problem, but at the
costof a heavy-weightdistinction betweenthe author

ing environmengandtherun-timeenvironmentAn im-

portantgoal of the FrameStackProjectwasto be able
to supportcreationof cybertextswith embeddedonts
that the cybertextauthorcan edit As of the time this

projectbegan the native font systemof Squeakis bit-

mapped.The decision of whetherto use bitmapped
ratherthan antialiasedfonts was one of the more aes

thetically difficult decisionsmadeduring this project.
In the end, a setof fonts was createdbasedon outline
fonts believedto be unencumberedrom these screen
renderingswvere importedinto a Squeakfont editor to

createbitmappedfonts with a close aestheticresemb

lanceto the effectof antialiasedonts on screenAs the

Squeakfont systemevolves,the fonts usedwill prob

ably change.

FERAL STRUCTURE

Thereis a greatdeal of researchnvolving integration
of hypertextsystemswith a largercomputingenviron

ment, particularly in the OHS community. Hypertext
has certainly had a wider perspectivethan just “the

confines” of hypertext applicationsfor quite a long

time. Still, it is mostcommonfor hypertextobjectsto

be found inside hypertextsystems.While the Squeak

desktopis not the native operatingsystemdesktop—
thoughit couldbecomehe native OS desktopsee[11]
— it is certainly a “generic object desktop”in which
theusercould spendthe entiretyof hertime andwhich
is not especiallydevotedto hypertext. The desktopis
the cyberspaceequivalentof the openair. A desktop
suchasthe SqueakWorld allows objectsto be simply
“loose” in the openair, muchasa physicaldesktopal-
lows physicalobjectsto belooseonits surfacewithout
beingplacedin a drawer.The appealof suchfreedom
is similar to the attractivenes®f spatial hypertextit-

self. Among the features offered by feral structure are:

« Objects near at hand are presumably prioritized.
« A disposition of the object can be postponed.

- A persistentdesktopallows work to be resumedn
exactly the state it was left in a previous session.

It is particularlyimportantto notethat feral structureis
ideally suitedto collecting cybertextualscrapswhere
the destinationof the scrapis not known at the time it
wascollected.As mentionedabove thereis a deephis-
torical affinity for poetsin particular to write by a
methodthatin partinvolves accumulatingmaterialsin
notebooksSystemssuchasFlash,with their extremely
heavy-weightdistinction betweenauthoringand run-
time, raise profound difficulties for collecting cyber
textualscrapsFigure4 showsa screerdumpof theac
tual live Squeakdesktopfor my currentwork in pro-
gress. Note there are several objects placed on the
desktopwhereverl found it convenientto work with
them:someareframestacksor frame stackrectangles,
someareframe stacktexts.Note the objectsin the top
left corner. These are iconified morphs. The ones
marked “playfield” are frame stack cardswhich are
moreor lessfinished, but havenot yet beenintegrated
into any higher level of structure.

Long time usersof (say) VKB may wonderwhy there
is any differencebetweerthe conceptof feral structure
as articulated here and the VKB “root collection”.
After all, in VKB no oneis obliged to make collec
tions;onemay placeall of one’sobjectsin theroot col-
lection. l.e. VKB allows a structurewhich is “flat”.
Whatis the differencebetweeraflat structureandferal
structurePerhaponecould arguethat this distinction
is simple hair-splitting, but the major differenceis that
anapplicationlike VKB is nota genericobjectsystem,
in which any kind of object (with any kind of
behavior!)can be placed.A VKB collection can only
containthe kinds of objectsthat havebeenspecifically
implementedin VKB. It is not “the open air”, but
rather a very special atmospherein which only a
severehlimited variety of creaturecanbreathe While
it would be easyto imaginethe Squeakdesktopasthe
native OS desktop,this would not be possiblewith

oA Uorage =7

X B Diagram Connectors T o
¥ E FrameStackText ©
X Ea HandDi o

shank year act

, reel meld articulate
X B FrameStack o©

X B playfield o©
crown fake rightness

X B playfield S thunder sequence

symbolism harness
skin strafe ungenuine

soliloquy dam sparrow
mercy grommet

extremity clef

crosswind declown marrow

Mavigator

mirage storm archetype friction

beg—e&s.

eis triage

nti Yva

kel g&a esrelf pillage
vista ree:

fat%es?[gg"e TapIor
shlgﬁ

shelffer’ locus .

Ien?'ﬁlﬁrclamor

eclipse haunt off

j h
g%%?ﬁgéﬁ;&”

s rnel
F&%%‘ ?fﬂﬁ?s delirious

duneless b

one walk
marrow

w—oo-

tion coda

Wadpess

transcend-ghost backstay windup

Figure 4

Screen dump of current work, showing the live Squeak desktop for a poem in progress. Many of these objects are
not yet finished, and the ones that are finished have not yet been given a final “destination”. The objects are “feral”
because they have not yet been captured into structure. (Though some have internal structure.)

VKB without a very significant amount of work.

Of coursea necessarycomponentof supportfor feral
structuremustbe the ability to “capturethe feral anim-
als”: parentlesobjectswhich are simply looseon the
desktopmust be easyto move into a more defined

structuralplace, oncethat place hasbeendetermined.

The pickup mechanismof Morphic makesthis simple
enough that it does not intrude on the “aesthetic
stream” of making poetry.

Is the Native OS Desktop a Spatial Hypertext?

It canbe arguedhata desktops nottruly the computer
equivalentof the openair unlessthatdesktopis the ul-

timate “native” operatingsystemdesktop.That raises
an interestingquestion:shouldwe considernative OS
desktopsas“already” spatialhypertextsygems?Many
userscertainly place a great deal of information on

their desktopsand someusersbecomecompletelylost
if a desktopicon goes missing: they navigate not

through the file system, but spatially on the desktop.

Thereareno commercialoperatingsystemghat havea
desktopwith the objectpowerof anythinglike evena
fragmentof Morphic. Perhapswve canlook forward to
this in the future.

USABILITY

The conceptof usability takeson an odd castin the
context of a personalauthoring system.How should
the authorof a personalauthoringsystemcarry out an
unbiased usability study? This is clearly impossible.

It will haveto suffice for meto simply offer anecdotal
evidence Basedon a few monthsof creatingfinished
works in the FrameStack Project,| can saythat total
elapsedime to completesucha work is cut by a factor
of about3 from my previousmethods.More import
antly, (and evenmore anecdotally alas)the feeling of
composingin this environmentis substantiallydiffer-
entthanit wasusingtools like HyperCard Whenwrit-

ing in the Frame Stack Project, the word object is a true

object, and can easily becomea finished “interactive
scrap’duringa singlesessionBy contrastusingprevi

ous methodsthe objecthoodof what appearson the
screenas a word object is a mere facade;inside the
work thereis no real object, and it might have taken
weeksafter all aestheticdecisionswere made before
there was any interactivity presentat all. Writing by
such methodsrelies on a completely non-interactive
documentvhich Bootz[1] callsthetexteauteur, which
provides a kind of implementationspecification for
how a cybertextis to be assembledwhile opinionscan
differ concerningwhat the term “interactive writing”
might mean,it is hardto call awriting processnteract

28-47.

2. Goodman, Danny, The Complete HyperCard
Handbook Bantam Books, New York, 1987.

3. Ingalls, Dan,Kaehler,Ted,Maloney,John,Wallace,
Scott,andKay, Alan. “Back to the Future:the Story of
Squeak, a practical Smalltalk written in itself”,
Proceedingsof the ACM SIGPLAN Conferenceon
Object-Oriented Programming Systems,Languages
and Applications,ACM, New York, 1997, pp. 318-

ive if interactivity appears only at the end of a long-pro 326.

cesstaking weeksor monthsin which thereareno in-
teractive objects present.

The intenselygranularindividual object natureof the
distinctionbetweenauthoringandrun-time achievedn
theFrameStackProjectsimply givesa differentfeeling
to the actof writing. It allows interactivewriting in the
true sense of the word.

FUTURE WORK

In additionto the frame stacks,my work alsoincludes
a formal structuringvia a diagramnotation which is
fundamentallyrelational. The result is structuresnot
unlike those achievedin Aquanet[7]. Currently the
Frame Stack Project does not support relations by
meansof any explicit classesThe relationsare simply
drawn, graphically,using an off-the-shelf Squeakpro-
jectcalledConnectorg4]. Thereneedgo beanexplicit
interface so that relationsin the Frame Stack Project
are real objects.

Currentlythereis no methodof exportingthe textin all
FrameStackTexbbjectsof a project. (This should be
quite simple to implement using available code for
Squeak.)

As of this writing, I've completedhreefinished poetic
works in the FrameStackProject.The word “finished’

is usedherein aesthetiderms;therearestill someopen
issuesregardinghow suchworks are to be published.
Also not yetinvestigatedareissuesof how to “harden”
Morphic for publication purposes..

ACKNOWLEDGMENTS

This work would not have beenpossiblewithout the
immensecontributionsof many other people,specific
ally: Allan Kay et al for Squeak,John Maloney for
bringing Morphic to Squeak, Ned Konz for
ConnectorsBoris Gaertnerfor his font editor, and of
courseCathyMarshall, Frank Shipman,and many oth-

4. Konz, Ned, Connectors,
nomad.com/squeak/index.html

http:/bike-

5. Krasner,G. E., and Pope,S. T., “A Cookbookfor
Using the Model-View-ControllerUser InterfacePara
digm in Smalltalk-80”, Journal of Object Oriented
Programming, August/September, 1988, 26-49.

6. Macromedia,

Inc., Flash San Francisco,

http://www.macromedia.com/support/flash/documentat

ion.html., 1995.

7. Marshall, CatherineC., Halasz, Frank G., Rogers,
RussellA. andJanssenyilliam C. Jr.,“Aquanet:a hy-
pertexttool to hold your knowledgein place”, Pro-
ceedingof Hypertext91, ACM, New York, 1991, pp.
261-275.

8. Marshall, CatherineC., Shipman,Frank M. Ill, and
Coombs,JJamedH., “VIKI: SpatialHypertextSupport
ing EmergentStructure”,EuropeanConferenceon Hy-
permediaTechnology1994 Proceedings ACM, New
York, 1994, pp. 13-23.

9. Rosenberg,Jim, “User Interface Behaviors for
SpatiallyOverlaid Implicit Structures”First Workshop
on Spatial ~ Hypertext, Arhus, 2001,
http://www.csdl.tamu.edu/~shipman/SpatialHypertext/
SH1/rosenberg.pdf.

10. Shipman,Frank M. 1lI, Hsieh, Haowei, Maloor,
Preetam, and Moore, J. Michael, “The Visual
Knowledge Builder: A Second Generation Spatial
Hypertext”, Hypertext'01: Proceedingsof the 2001
ACM Conferenceon Hypertext ACM, New York,
2001, pp. 113-122.

11 Smith,David A., Raab,Andreas,Reed,David, and
Kay, Alan, Croquet The User Manual Viewpoints

ers for the concept of spatial hypertext in the first placeResearchinstitute, Glendale,2002, http://glab.cs.uni-

REFERENCES

1. Bootz, Philippe.“Le point de vue fonctionnel:point
de vue tragique et programme pilote”. alire 10 /
DOCUK)S, MOTS-VOIR, Villeneuved’Ascq, 1997, pp.

magdeburg.de/~croquet/downloads/Croquet0.1.pdf.

12. Smith, Randall B., Maloney, John, and Ungar,
David, “The Self-4.0 User Interface: Manifesting a
System-wideVision of ConcretenesdJniformity, and

Flexibility”, Proceedings of the Tenth Annual
Conference on Object-oriented Programming Systems,
Languages, and Applications, ACM, New York, 1995,
pp.: 47 - 60

