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Abstract

A network of recurrent logistic units with local, orientation-sensitive coupling is used to
study the transformation of spatial forms in a computational framework called synchronization
opponent cooperative action networks. Evolutionary search "nds dynamics for which curves,
rank-ordered by a generating parameter, are transformed to produce a similarity space with
dimensions de"ned by partitions of the phase space. The network also recognizes objects by
normalizing several views of 3-D objects to a characteristic distribution. A spatio-temporal
population code where both active and quiet units convey information is proposed, with the
phase space interpreted as ensemble average frequency of coupled populations. � 2001
Published by Elsevier Science B.V.
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1. Introduction

The nature of shape representation and fundamental principles of neural coding
beyond early visual cortex remains controversial. Recent work in psychophysics [22]
suggests that view-based representations with interpolation are used in human vision,
in contrast to object-centered, view invariant representations. Related to any theory of
representation is the neural code supporting it. Models of coding and computation at
the level of objects and feature integration historically fall into two basic categories:
local coding and population-level coding, with sparse population-level coding taking an
intermediate position between these extremes. Evidence for population level coding is
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accumulating [10], even in primary visual cortex where local coding has been the
working hypothesis for many years [14]. I propose a form of population coding over
a network of oscillating groups, exploiting regular alternation between epochs of
loosely coupled chaotic dynamics and more strongly coupled chaotic dynamics across
a regularly connected, orientation-sensitive array of recurrent units. These alternating
dynamical stages are designated synchronization opponent cooperative action
(SOCA) network. Attractor convergence time distributions from local pattern con"g-
urations leading to partial synchronization have been found to support population
coding of a metric representation space for parametric forms, and to support recogni-
tion of objects rotated in depth [6]. In this paper, the emphasis will be on formulating
a neural code with such dynamics, rather than on details of learning or performance of
the network. A brief discussion of the network and competing accounts of object
recognition is included, with some proposed experiments to falsify or con"rm the
theory.
The relevant population dynamics which carry the code (and must be observed for

at least a brief window) are aperiodic oscillation patterns over the entire network,
rather than individual units or small groups used in sparse coding. In this sense, the
dynamics is similar to the proposed encoding of olfactory memories by Freeman and
colleagues [9]. The model proposed here di!ers in that particular temporal intervals of
increased synchronization in an ongoing switching between opposing dynamical ep-
ochs, rather than chaotic attractors, is the carrier of information. The epochs of
desynchronization and synchronization with particular parameters are designated in
this network as attractor frames. To form a representation space, the oscillation
patterns converge to a characteristic instantaneous distribution over the population
during the synchronization interval. The distribution is uniquely determined for
a particular category (family of shapes) by a learning procedure. The present model
hypothesizes that feature integration or binding occurs for objects by complex, spatio-
temporal interactions in ensemble frequencies of locally connected non-linear oscil-
lators, as a strongly synchronized initial stimulus spreads over a limited region from
contours extracted in early visual areas. Thus two roles are established for increased
synchrony. Early visual areas must present brie#y synchronized edge extractions to
higher levels; these form representation spaces based on local image statistics of the
contours. The higher level areas exhibit transient periods of synchronization as both
signatures of this computation and as the carrier in a population code. Jaeger [12] has
also recently advocated that such epochs of phase space contraction in non-stationary
systems be considered as symbols or representational elements, in contrast to chaotic
attractors in stationary systems.

2. Simulation methods and results

To explore the possibilities of computation and representation of similarity spaces,
two families of experiments were performed with highly schematized networks. The
"rst set sought to discover whether the SOCA network could discover parameters for
which the resulting distributions formed a metric representation of parametric curves.
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Such curves were chosen so that similarity can be unambiguously de"ned, in contrast
to the general space of all possible input con"gurations. A second set demonstrated
that the stimulus invariance problem could be solved for 3-D objects by "nding
parameters for which the "nal distribution is roughly equivalent for the same object
seen from di!erent viewpoints.
In simulations, a network of recurrent logistic units is given several views of

a parametric curve as an initial condition (see Appendix A for the network equations).
Each view is a binary image; an edge in this image is interpreted biologically as
(momentarily) strongly synchronized active units adjacent to background rate units.
The distribution of states (interpreted as ensemble average frequency in a local
oscillating group) after 6}16 iterations of the network is a vector which acts as a point
in a representation space, just as output units in radial basis function networks
support a representation space [8]. Euclidean distances between these vectors are
used as a similarity metric between the forms. Evolutionary search "nds network
parameters which produce a near-linear correspondence between the state distribu-
tions and the parameter-determined similarity of the form provided as initial condi-
tion to the model. Parameters are time varying; typical solutions reached are a regime
of coupled chaos followed by stronger coupling, with the second stage resulting in
contraction of the phase space (sharpening the distribution).
Typically 2}6 distribution components with more than 4% of the units are present,

with the remaining states (ensemble frequencies) occupied at low levels and evolving
irregularly with respect to the parametric form changes. In the object recognition task,
explicit limits on synchronization (a maximum of 15% of the population in any one
partition cell) during learning proved e!ective in solving the problem. The resulting
broad distribution suggests that studies which fail to "nd synchronization in infero-
temporal (IT) cortex with a limited sample of neurons do not rule out this coding
strategy [23].
It should be stressed that synchronization as discussed here (and elsewhere in the

emerging literature on chaotic synchronization) refers to synchronization of many
units through coupling. This is in contrast to typical usage in neuron spike studies,
where synchronization refers to in-phase oscillations or "ring. The "rst sense con-
sidered here is general enough to cover both cases. If the state variable is interpreted as
spike train phase o!sets, relative to a stimulus locked reference, the resulting states are
readily interpreted as phase synchrony. Such interpretation would require a di!erent
micro-circuit justi"cation of the use of coupled chaotic ensembles, since existing work
referenced here uses state variables of spike rates or pulse density (Fig. 1).
The mapping of forms to overall network state distributions can also normalize

views to the same distribution and interpolate between training views, as can feed-
forward radial basis function (RBF) ensemble networks proposed for view interpola-
tion [8]. Initial results on a recognition task are comparable to reported implementa-
tions of RBF models (both better than 80%) when similar numbers of views are used.
In contrast to RBF and recent feature histogram models [17], here it is assumed that
spatio-temporal patterns in networks of spike time sensitive units are the key compu-
tation and coding mechanism. In RBF models, broad tuning allows the summed,
weighted output of multiple units with di!erent center peaks and widths to interpolate
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Fig. 1. (a) Fraction of units in 256 partition cells at sampled after 14 iterations with winning SOCA
parameter set for a family of ellipses as the major to minor axis aspect ratio ranges from 1.0 to 3.0. The set of
points for each view is essentially a histogram turned on its side. The smooth parallel evolution of the lines
indicates the network creates a representation space, with each ellipse represented as a point on a hypercube
whose dimensions correspond to partition cells. (b) Fraction of units in 64 partition cells at sampling time
with parameter set found to perform normalization for seven views of object 5.5 in the Tarr paperclip image
set. The numbers above each line indicates which partition cell (bin) is drawn. Mean values of each bin
across all trained views are used for matching in the object recognition task.

views for a given family of objects. The present network similarly exploits the statistics
of pattern dependent attractor convergence times in units with identical parameters
and coupling strengths for a given category. As the initial binary distribution evolves
due to orientation-sensitive di!usive connections, diverse pathways through attractor
basins allow the network to interpolate a wide range of shape transformations after
"nding a good "tness in the network parameter space. As in the RBF network, each
family of shapes requires a unique classi"er. One notable di!erence in these models
concerns the observed variability of reaction times for di!erent objects [16].
Feed-forward models provide no direct explanation for such variability; the
SOCA model produces classi"ers with a wide range of iteration times (Appendix A).
This is suggestive, but a more biologically realistic dynamics for comparing
the incoming dynamical states with a stored representation is needed before claiming
that the SOCA network provides a convincing explanation for variable reaction
times.

3. Discussion

Reviewing lesion studies indicates that certainly infero-temporal cortex [19] and
possibly ventral medial frontal cortex [2] are key sites in object recognition. The
majority of recent experimental investigations and models assume a local rate code
[15,3,21]. The theory here is partially motivated by neuron recording data showing
the spiking response of IT cortex cells to be complex, time varying signals over an
active background [20], and to observations of multiple-cell recordings in primary
visual cortex and demonstrating systematic #uctuations in correlation over time [1].
Both of these groups argue for the signi"cance of temporal patterns in spike trains, in
contrast to classical local or feature detector coding, where frequency is maximized for
an optimal stimulus.
The ultimate memory code supporting the perceptual dynamics rests on micro-

circuit parameters, such as excitatory}inhibitory ratios in local populations and
lateral connections corresponding, respectively, to the bifurcation and coupling dy-
namical parameters in this model of large scale dynamics. Many studies demonstrate
that network or population level oscillatory dynamics of the type exhibited by the
logistic units are possible [5,4]. Note that the term oscillations as used here (and
generally in non-linear dynamics) simply means that a time series evolves non-
monotonically; thus both periodic and chaotic behavior are oscillatory, though
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a chaotic time series might conventionally be regarded as a stochastic signal rather
than an oscillation.
Single unit or pair-wise unit spike rate measurements are unlikely to directly reveal

this code, since they may re#ect an ensemble level frequency (pulse density) code only
indirectly and statistically.
The observed correlation of single neuron "ring rates with a particular stimulus is

not incompatible with population coding; it may simply indicate that a particular
localized region (corresponding to a particular classi"er parameter set in the present
model) has some columns which are on average excited by a stimulus, while others are
inhibited. Gochin et al. [11] found that "ve stimuli could be inferred from a histogram
of excited and inhibited responses of 40}50 cells in monkey IT cortex. These results
suggest an ensemble interpretation in terms of histograms of numbers of excited and
suppressed units without regard to location. (They use temporal integration, rather
than instantaneous statistics as in the present model.) Studies of modulations in
correlation and e!ective connectivity as pioneered by Aertsen et al. [1], if performed
in IT cortex along with procedures of Gochin et al., could reveal whether the best
histogram predictions are obtained in intervals of increased correlation for many
pairs, as the present theory of computation and coding would predict. RBF networks
would predict no relationship between the highly correlated epochs and best histo-
gram prediction. The issue is confused by doubts over whether sub-regions of IT
represent the locus of a feed-forward representation network or an area of comparison
of incoming dynamics with memory representation by unknown processes (possibly
involving synchronization dynamics). In tasks with a visual memory component (the
monkey must release a bar when a match to the target is shown after several
distractors), it has been shown that neuronal responses are decreased substantially
from their optimal stimulus when a stimulus matching the target is shown [18].

4. Conclusion

The correlation or dynamical cell assembly hypothesis proposed by Fuji and
colleagues [10] attempts to reconcile and extend a variety of theoretical and experi-
mental data related to oscillations, temporal modulations of individual units, and
multi-channel unit correlations. Their proposed population code is at the level of
dynamic states rather than a population of broadly tuned detectors. The SOCAmodel
suggests a di!erent interpretation for such oscillations and their role; it uses dynamics
alternating between loosely coupled (desynchronizing) chaotic attractor frames and
a second opponent stage or frame which partially synchronizes transient trajectories.
During the synchronization frame, the spike frequency distribution sharpens, exhibi-
ting peaks with time as more units approach the characteristic distribution of units
operating in that attractor frame with random initial conditions. Surprisingly, this
distribution can be approached in only a few iterations for fully chaotic systems [7]
from an ensemble of random initial conditions. The random initial condition must be
approximated by the "rst desynchronization stage. The adaptive search process must
therefore "nd a dynamics which maximizes entropy from all local con"gurations in
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the family of initial condition implied by the shape family. The exact dynamics of the
second stage varies from highly coupled fully chaotic local dynamics, to more loosely
coupled networks but with the local bifurcation below the transition to chaos. By
partially synchronizing transient trajectories, it is stressed that no attractors are
reached in the processing dynamics, in contrast to attractor recurrent networks. Since
the dynamics are terminated in this highly schematic model, the readout and storage
of states functionsmuch like an attractor network. In a biological system operating on
these principles, an ongoing modulation between two such stages would be expected,
with correspondingly more complex modes of readout, long term memory formation,
and use of the encoding in visual search tasks. Exploring such dynamics and formula-
ting a more biologically plausible learning rule are the next logical steps in this
research program.
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Appendix A. Equations used in the dynamical evolution of patterns

The short range coupled logistic map [13] is used here; the actual implementation is
divided into two steps; "rst a di!usion step is applied

S
�
(x, y)"(1!c)S

�
(x, y)

#

c

4
[S

�
(x, y#1)#S

�
(x, y!1)#S

�
(x#1, y)#S

�
(x!1, y)],

where S
�
is the intermediate di!usion array, t is the current time step, x, y are the

spatial indices of the pixel array S at the center of the di!usion neighborhood, S is the
state variable at each pixel of the array restricted to the range [!1.0}1.0], and c is
the coupling constant restricted to the range [0.0}1.0]. The scaling term 1!c is
a squashing function preventing the sum of the surround from exceeding the state
bounds; in micro-circuit parameters it is perhaps interpreted as a gain control limiting
the instantaneous in#uence of a highly active neighborhood.
The second computational unit applied in each time step is the logistic map

S
���

(x, y)"1!bS
�
(x, y)�,

where S, t, x, and y are as above and where b is the bifurcation parameter, restricted
to the range [0.0(b(2.0]. Initial and intermediate states S are restricted to the
range [!1.0(S(1.0].
Each stage or attractor frame consists of a triple �b, c, s�, where s is number of

iterations in the stage. Two such frames are applied in turn. During evolutionary
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search for the parameter sets, the "rst stage is constrained to 2}6 iterations, the second
constrained to 2}9 stages. The total iterations required to create the representation
space ranges from 6 to 14 iterations, with a mean of 11.3 on the 39 objects in the
Tarr paperclip� geon set.
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