
Abstract

A regular array of discrete-time nonlinear oscillators with
recurrent  connections (coupled map lattice or CML) can
perform object recognition by acting as a dynamical
recognizer, while simultaneously performing computations to
normalize class members to a common representation.
Partition cells of the network state space serve as dimensions
of the representation space.  Occupancy statistics in each such
cell after a brief evolution of the system, governed by
intrinsic time-varying dynamics of the oscillators and the
forms presented as initial conditions, result in a population
code measured over all units.  Results on recognition of
paperclip objects rotated in depth using an ensemble of
classifiers are reported.  With training on seven views
separated by 30 degrees, the system achieves recognition rates
of 85% for a set of twenty paperclip objects.  Recognition is
achieved in an average of 12 iterations of the recurrent
system. Performance degrades with fewer training views, with
angular distance from training views, and with an increasing
number of objects. Biological support for this theory of
object recognition is examined.

1  Introduction

While the nature of object representation in the human and
other  primate brains remains controversial, progress on
understanding the nature of internal representations has been
made in recent years.  This progress rests largely on
observing indirect measures such as error rates in human and
primate recognition tasks, as well as neural spike rate
recordings in single and multi-channel paradigms.  Prediction
of a behaviorally correlated stimulus correlated with behavior
from the neural trace is the most informative neural analysis
technique.

Theories on object recognition classically fall into two major
camps: structural or object based theories, and view based
theories. Structural description theories assume that view-
independent or invariant features underlie the representation of
objects.  View based theories build representations from
various local features extracted from separate learned views,
and have historically been associated with the subordinate
level of categorization. Advocates of view-based

representations have recently claimed that basic level
categorization can emerge in a natural fashion from the
clustering involved in making subordinate level distinctions
[1].  A growing body of experimental evidence now suggests
that performance on recognition tasks is proportional to the
distance from the nearest familiar view.  This includes both
error rate measures [2] and recognition time [3][4].

In everyday life we spontaneously identify objects, and create
categories from the  diverse retinal images of an object seen
from different viewpoints, or from the diverse individual
members of a species.  However, this fundamental problem of
stimulus identity has only recently begun to be addressed
satisfactorily in computer vision.  While many geometric
methods have been developed for handling translation and
rotation in the plane [5][6], rotation in depth of diverse
objects has been addressed most recently and successfully
through statistical approaches with a rich feature space [7],
and by an ensemble of radial basis function (RBF) neural
networks implementing a view normalization and
interpolation strategy [8].

While the RBF method has produced impressive recognition
rates on small object worlds, the fundamental computational
and coding principles (integration of spike rates and rate codes
transmitted by specific neurons) on which its status as a
biological theory rests have been questioned recently in the
neuroscience community [9]. The work presented here rests
on a different view of neuronal function in higher level vision
in which neurons perform the work of perception chiefly
through participation in medium and large scale oscillating
ensembles. These oscillations are aperiodic due to the
underlying nonlinear dynamics of such ensemble units, but
strong coupling can suppress the nonlinearity or chaos level,
resulting in synchronized chaos, clusters of synchronized
chaos, or even more regular phenomena such synchronized
periodic oscillations, perhaps with instabilities. The
underlying computational principles for higher spatial vision
are the interaction of nonlinearity and synchronization
phenomena with oriented coupling kernels.

An additional important aspect of the network described here
is the initial confinement of the network state to a subspace
(by the extraction of a primal sketch in early vision), which
then undergoes phase space expansion by the chaotic
dynamics, and ultimately reaches a decision state in another
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subspace. Thus two related types of synchronization are
operating: the usual sense of phase synchronization, and the
more abstract sense from graph theory and symbolic dynamics
which we designate "subspace synchronization".

 Statistical population coding is used,  meaning that statistics
over the entire population of units are measured; objects are
located as a subspace in the space whose dimensions are
defined by intervals in the dynamical phase space of the
system.  This is in contrast with gnostic cell or place coding
formulations, or distributed coding in connectionist networks
as activation of specific units. Instead, partial phase
synchronization after some iterations results in what might be
called transient subspace synchronization. In the latter, the
effective correlations between units are increased, and effective
dimension (phase space volume) is reduced.

These principles are motivated and supported by a variety of
observations in primary visual areas and various sub-regions
of inferotemporal cortex implicated in object recognition; for
reviews see [10],[11],[12] In addition, the work is compatible
with recent approaches in computer vision which have been
designated as "shape through transformation" [13].

While building on past work on recurrent networks and high
dimensional coupled chaotic systems, this study makes
substantive breaks with previous approaches. The most
important is to introduce two stages with a sharp change in
the parameters, rather than stationary or smoothly changing
dynamics.  It also breaks with typical recurrent networks by
concentrating on the transient regime of dynamics rather than
on attractors.  This staged processing, with desynchronization
and partial synchronization of dynamical transients, motivates
our designation of the system as a Synchronization Opponent
Cooperative Activity (Soca) network.

2  Methods

In this section we present the basic formalism of a coupled
map lattice [14], followed by the extension to a time varying
system.  Input images in the system are subjected to a
thresholding operation to produce a silhouette.  This binary
image is mapped into values 0.0001 and .9999 as an initial
condition which is transformed by the coupled map lattice.

2.1 Coupled Map Formulation

The coupled map computation consists of interleaved
diffusive coupling and nonlinear map stages proceeding for
some number if iterations or time steps t. The first diffusive
coupling step is expressed as:
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 where: d  is the intermediate diffusion array,  t  is the
current time step,  x, y  are the spatial indices of  the pixel
array S at the center of the diffusion neighborhood,  S   is the

state variable at each site of the shape array, and c  is the
coupling constant restricted to the range <0.0 to 1.0>.  The
fact that diagonal elements not processed results in an
orientation sensitivity of the process.

 The second computational unit applied in each time
step is the asymmetric logistic map:
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 where b is a bifurcation parameter; changing this parameter
forces a structured  transition between phases following the
sequence of attractor types: fixed point → limit cycle cascade
of increasing period and instability → intermittency →  chaos
→ {limit cycle cascade →chaos}. In contrast to the
symmetric logistic, this function ranges from –1.0 to 1.0,
and is thus suitable for modeling neural dynamics which vary
about a background rate.

2.2 Synchronization Opponent System

The two stages just described constitute a single iteration of
the CML system.  Motivated to  investigate slower dynamics
as modulating bifurcation and coupling parameters to achieve
some computational goal, we utilize two stages designated as
synchronization opponents.  The first is desynchronizing
(both phase and subspace senses), while the second is
synchronizing. Each stage, or attractor frame consists of a
triple {b, c, s}, where s is number of iterations in the stage.
The terminology attractor frame is introduced to clarify the
point that the computation is performed in the transient
evolution, rather than by reaching attractors.

Two such frames are applied in turn.  During evolutionary
search for the parameter sets, the first stage is constrained to
2-6 iterations, the second constrained to 2-9 stages.  In the
evolved solutions, the total iterations required to create the
representation space ranges from 6 to 14 iterations, with a
mean of 11.3 iterations for the 39 objects in a 3D object
recognition task.  The following pseudocode summarizes the
procedure.

procedure  synchronizationOpponentNetwork  
  image = threshold(downSample(readImage)))  
  for iterations = 1 to t1      

     diffuseImage = filter2D(couplingMatrix,image)
     image = logisticMap(diffuseImage,b1,c1);

  end // Desynchronize stage
  for iterations = 1 to t2
      diffuseImage = filter2D(CouplingMatrix,image)
      image = logisticMap(diffuseImage,b2,c2);
  end // Partial Synchronize stage
end  // procedure

Because of the variation in divergence and convergence times,
a specific set of bifurcation, coupling, and iteration time
parameters {b1, c1, t1, b2, c2, t2} has a characteristic
response to any given image or family of images.  Each
image can be considered as a set of overlapping initial



configurations of size t1+t2; by the end of the Soca process
above, information about local configurations from a window
of size t1+t2 is contained in each unit (i.e. each pixel in the
processing array).  The set of initial configurations
comprising one image may be highly synchronizing for those
parameters, while those from another image may be less so.

The intuition behind the network operation is that  images in
some  category are considered as productions of a stochastic
language on an alphabet α  whose symbols are local pixel
configurations.  We seek parameters for the first
(desynchronizing) stage which, for this language, have the
appropriate divergence rate matching parameter determined
characteristics of the second (synchronizing) stage.  The
second stage must have characteristically avoided regions of
state space and state transitions such that images in the
category will converge near a characteristic sparse distribution
or subspace.

2.3 Dynamical Recognizers for View
Normalization

One way to view a family of images (such as outline views
of an object) is as a stochastic language, where the alphabet is
particular orientation and transitions probabilities of various
orders capture the adjacency or co-occurrence of features. The
problem of learning to accept positive exemplars of a
language while rejecting negative exemplars is known as
language induction.  Classical machine learning approaches to
this problem construct a finite state automaton to affect
recognition. Formally, a finite state recognizer is a quadruple
{ , , , }Q FΣ δ , where Q  is a set of states (with q0  denoting

the initial state), Σ is some finite alphabet, δ is a transition
function mapping Q ×∑⇒  Q, and F ⊂  Q is a set of final or
accepting states.  A string of tokens from alphabet Σ is
accepted by the recognizers if, starting from initial state q0 the
sequence of state transitions indicated by the tokens in the
string ends up in one of the final states in subset F.

The dynamical recognizer [15] is a quadruple {Z,Σ,Ω,G},
where Z ⊂  Rk is a state space; zk(0) is the initial condition.  Σ
is the input “alphabet”, where a particular closed interval in Z
corresponds to each element in this alphabet.   .  Ω  is the
dynamic, a sequence of transformations ωI:Z→Z (one for each
token ) with an associated set of dynamical parameters; these
parameters are fixed for a particular recognizer during the
induction (training ) process.  G(Z) →{ 0,1} is the decision
function which maps one or more states in the sequence
produced by the dynamic to an accept/ reject decision.  In
Pollack’s intial study cited above, only the final state and
token are used in the decision function.

The recognition method here is consistent with and extends
the dynamical recognizer framework to higher dimensional
systems.  A key difference is that the Soca net operates on an
image “string” in parallel (thus the network state space has
dimensionality RN, where N is the number of pixels or
sampled image elements), and the tokens are used only once

as the initial state.  Such a parallel recognizer framework for
picture languages with constrained states and transformations
was studied in a series of papers by Rosenfeld [16].  In
Rosenfeld’s formulation, the transition function at each pixel
is now a function of several tokens in some spatial
neighborhood, i.e. a cellular automata formalism. The
decision function is necessarily modified by this larger state
space.  Rosenfeld proposed several possibilities:

1. every spatial element reaches an accepting state;
2. any element reaches an accepting state;
3. one particular spatial element reaches an accepting

state;

In the Soca network and recognition strategy, we form a
representation space, but that space consists of statistics
measured instantaneously during a high dimensional, parallel
dynamics, rather than a direct map of the input features or
measurement space.  These statistics naturally support a
decision function; one simply defines a threshold distance for
each classifier, and accepts an object as an instance of
language L if the Euclidean distance from the classifier's
occupancy statistic signature to the corresponding learned
signature is within the threshold. The distances might vary by
class, depending on the cluster density of that class in the
representation space.  In practice, the present network treats
the partition cells occupancies of all classifiers as a
representation space of a quasi-metric character, as objects
whose orientation statistics are similar will map to nearby
points in the representation space.  We call the space a
partition cell metric space.  Thus any presented outline image
has a computable distance function to each recognizer.

2.4 Learning

To produce such a recognizer which can capture the differences
in orientation statistics in the family of images, we employ
an evolutionary computing strategy. In contrast to typical
practice, the generated network is not tested on the
recognition task, but is evaluated on several abstract measures
on the partition cell distribution in an objective function.

The CML computation is relatively expensive on serial
hardware. In the present recognition implementation each
classifier previously generated for different objects would be
evaluated during evaluation of a candidate network genotype.
Using Matlab, we presently evaluate 3000 candidate networks
(30 generations of 100 individuals) in about 45 minutes per
object on a 400MHz PowerPC 750; full evaluation on the
recognition task would increase the time by a factor of 200.
Evaluation of a single parameter set on 75 x 75 pixel test
images uses at most .18 ms, so recognition performance
approaches real time human performance for 20 objects.

The objective function used in learning must balance two
goals: 1) tight clustering of different views of an object and 2)
separation of classes corresponding to various views of other
objects.  A view normalization strategy (originated in the
radial basis function approach to view based recognition)



serves the tight clustering goal, with a cross-entropy term
comparing current output with previously stored
representations enforcing separation of objects in the
representation space.

 The objective function returning a fitness f, with low values
indicating higher fitness, takes the form

f W D W H H Pd e c s synch= − + +( ) (3)

where Wd  is the inter-view distance or normalization weight
and We is the entropy weight; D, the inter-view distance sum
for j views is
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where vp are the occupancies of  k partition cells for  each  of
the j views.  

Hc  is the cross entropy or Kullback-Lieber information
measure between the current reference view distribution C and
the database of N object distributions (signatures) S with k
bins:
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Hs , the Shannon entropy of the current signature with k bins
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The parameter synchPenThresh was empirically determined as
.15.  The following table indicates results of varying the
synchronization penalty threshold on the nearest neighbor
match of the 0° view.

Table 1.   Error rates for objective function weight sets
 Wd  We  SynchPenThresh  Error Rate

%
 20  2  .4  45
 20  2  ,25  24
 2 0  2  . 1 5  1 5
 min  Max  .15  40

 
The table above is a comparison of effects of different sets

of objective function parameter weight on performance of
nearest neighbor match with 20 objects and training with all
views.  The last row indicates that rather than two terms with
weights, the objective was formulated as a minimizing the
ratio distance / entropy. The set Wd=20,We=2,

SynchPenThresh =.15 was selected as the standard weight set
for learning and recognition trials.

2.5 Recognition

Having generated representations by searching for dynamics
which perform both view normalization and class separation
in the space via a cross entropy term, recognition of the
objects is implemented by simply processing a target view
with the parameter set {b1,c1,t1,b1,c2,t2} defining each
classifier, then computing the Euclidean distance to a saved
histogram or distribution obtained by averaging each partition
cell occupancy value across all views of the original object.
The number of cells (64 in the current implementation) is an
implicit parameter. The object is assigned to the class which
results in the minimum distance to the original signature.

3  Data Selection

Much recent experimental visual psychology and neuroscience
research on the on 3-D object recognition has worked with a
family of objects commonly referred to as paper clips.  For
continuity with this research, we performed network
simulations on a set of paperclip objects previously studied in
psychophysics.  The image set designed in the visual
psychology lab of M. Tarr, and consists of 391  paper clip
objects, with seven views provided for each object rotated in
depth.  Each object is a chain of 5 cylinders, with a variable
joint angle connecting each pair.  The views are separated by
30°, ranging from –90° to 90°.  The objects were originally
developed to answer questions regarding the recognition by
components or geon theory of Biederman [17].  The set
consists of four complexity groups  with 0, 1, 3 or 5 unique
geons substituted at some position in the chain.

Similar paperclip objects (corresponding to the low
complexity set) were used in human psychophysics
experiments [2].  In these experiments, subjects were trained
with motion sequences of 2-D views, giving an impression of
a 3-D object through the kinetic depth effect.  In a two-
alternative forced choice task on their object set, with single
static views of a target or distractor, the miss rate (failure to
indicate a match when the target was shown) averaged 30%,
indicating that the task is rather difficult. We exceed this rate,
but higher complexity objects are more easily distinguished.

Fig. 1.   Two silhouette views of the same paperclip
object, illustrating the extreme nature of the distortion due to
rotation in depth. The left view is the 0°, the right view is

1 One object in the last group was duplicated in the original set, hence
39 rather than an even 40.



+90°. The raw paperclip image set was provided courtesy of
Michael Tarr, Dept. of Psychology, Brown University.

The specific object set used here was also used in a study by
Tarr and colleagues attempting to discriminate between view-
based and structural theories [4].  In this study no training
period was provided; subjects simply had to judge whether
two views shown briefly (200 and 100 ms, separated by a
mask stimulus) were the same or different.  Under these
conditions, the baseline set of shapes (all tubes with no geons
inserted) were essentially not recognizable by subjects when
presented in widely separated views.

4  Results

After a small set of trials to establish the objective function
term weights, a set of learning and recognition trials were
performed.  The number of training views was varied from
two to seven, beginning with {-90,-60} views and adding
successive views in order.  Two variants of the cross entropy
approach were performed; first a reference view was chosen,
and the partition cell mean occupancies of previous signatures
was compared to that view. In the second, the mean partition
cell occupancy of all views was compared to the mean of
previous signatures. In the single set of experiments, no
substantial difference in performance was found for this
variation.  These two variations were each tested with object
worlds consisting of 20 and 39 objects to assess recognition
performance scaling with number of objects. During
recognition trials, all views of every object were presented to
compute error rates; the following figure summarizes the
results.
.
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Fig. 2.   Summary of nearest neighbor classifier
recognition rates with training on 2-7 views, for 20 vs. 39
object worlds,  and for reference and mean cross-entropy
computations.

We observe that while each of the two stages over time
exhibits a general trend toward increasing or decreasing phase
space volume, the volume varies non-monotonically from
step to step in the transient regime. We tested the
performance of a CML with stationary dynamics ( i.e. a
single stage network) and found it was surprisingly effective,
when given the same upper bound of 16 iterations as the two
stage network.  The following table shows results of 10 trials
using the same learning parameters; additional testing is in
progress to assess whether these trends are statistically
significant.  It appears that the underlying normalizing
recognizer mechanism can function with a single stage, but
that both the best recognition rates and the mean number of
iterations (recognition time) are slightly improved by the two
stage process.
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Fig. 3.   Best and mean recognition rates and mean
iterations as a percent of total allowed iterations for single
stage (stationary and two stage (i.e. Soca network) with all
seven views provided, 10 trials each with identical learning
parameters.

5  Conclusion

The Soca network approach shows promise as a machine
vision technique.  When adjusted for an equal number of
training views the network achieves recognition performance
comparable to other recent view based approaches, although
to date a common test suite for rotation in depth has not
emerged, and the complexity of objects and amount of raw
information in images varies [11].  In a single computation
specified by few parameters, the network performs both local
feature integration (by the diffusion process) and solves the
normalization of views problem.  In contrast to other
approaches, no global statistics of the object world are used to
adjust weights or select optimal center views.
 

The system captures aspects of human psychophysical
performance. Both the Soca system and the Chorus RBF
ensemble show a decrease in performance with increasing
distance from training views when a subset of views is used
for training.  However, the Soca network shows variation in
the time to reach the population code.  This parameter is
implicit in taking iteration counts as a parameter during



learning, suggesting that optimal readout of a computation
occurs at a particular time or slow wave phase, since the
system is not reaching an attractor.

The resulting changes in occupancy of dynamical stages are in
accord with observed stimulus related fluctuations in
correlation of multi-neuron experiments [18], with the time
course of changes in local field potential coherence between
primary visual cortex and IT [19], and with stimulus-linked
aperiodic oscillations [20]; in addition, we believe
observations of stimulus linked slow (4-7 Hz) oscillations in
the temporal pole [21] support the present theory; we would
predict that slow wave bifurcation and coupling controls
would be fed into regions performing the normalization task
both in object memory formation and in primed search. Area
TEO is the most likely candidate due to direct temporal pole
connections, though area V4 has more localized receptive
fields like the present system.

The small advantages in reaction time and error rates (Fig. 3)
seen in our preliminary comparison of stationary and two
stage "Soca-style" dynamics suggest that evolution exploits
slow wave bifurcation and coupling control to improve the
recognition performance of stationary systems. Further
testing is required to ascertain whether these trends are
statistically significant; however, more optimization of the
learning methods (mutation rates, possible use of Gaussian
mutation) should be performed first, so that the variance in
recognition rates between trials is minimized prior to such a
comparison.

As a biological theory, we bear the burden of explaining
observations of specific neurons whose activity increases for
specific stimulus in IT regions (for review, see [22], [23]).
Two explanations are envisioned. First, such neurons may
simply be feeding into a more complex computation which
the organism actually uses; the experimenter is able to
distinguish the stimulus from a limited range of inputs, but
might not be able to do so with a broad range of stimulus.
Alternatively, these observations could be indicative of
readout assemblies which are sensitive to particular
combinations of instantaneous (or short time averaged)
oscillation frequencies corresponding to the computation and
coding process of a Soca-like network attempting to map
different views or other transformations to a common
subspace.  Observations of multiple active areas with optical
recording [24] have been interpreted  as activation of RBF
style prototype units, situating an object in a representation
space spanned by multiple prototypes [25].  We propose that
these are multiple readout assemblies, indicating the
exploitation of multiple dynamical recognizers to improve the
performance, or simply assemblies which correspond to
populations close in the representation space by virtue of
solving the stimulus identity problem for objects with
similar low order statistics. Elucidation of the low level
dynamics of interactions between Soca type networks and

hypothetical readout assemblies remains an area for future
work.
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