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Abstract

A regular array of discrete-time nonlinear oscillators with
recurrent  connections (coupled map lattice or CML) can
perform object recognition by acting as a dynamical
recognizer, while simultaneously performing computations to
normalize class members to a common representation.
Partition cells of the network state space serve as dimensions
of the representation space. Occupancy statisticsin each such
cell after a brief evolution of the system, governed by
intrinsic time-varying dynamics of the oscillators and the
forms presented as initial conditions, result in a population
code measured over all units. Results on recognition of
paperclip objects rotated in depth using an ensemble of
classifiers are reported. With training on seven views
separated by 30 degrees, the system achieves recognition rates
of 85% for a set of twenty paperclip objects. Recognition is
achieved in an average of 12 iterations of the recurrent
system. Performance degrades with fewer training views, with
angular distance from training views, and with an increasing
number of objects. Biological support for this theory of
object recognition is examined.

1 Introduction

While the nature ofobject representation irthe human and
other primate braingemains controversialprogress on
understandinghe natureof internal representationsias been
made in recent years.  This progress rests largely on
observing indirecmeasuresuch aserror rates inhuman and
primate recognitiontasks, as well asneural spike rate
recordings in singleand multi-channelparadigms. Prediction
of a behaviorallycorrelatedstimulus correlatedwith behavior
from the neuraltrace isthe mostinformative neural analysis
technique.

Theories on object recognition classicd®l into two major
camps:structural or object based theories, and view basd
theories. Structuratescriptiontheories assumeéhat view-
independent or invariant features underli¢ghe representation of
objects. View based theories build representationdrom
various localfeaturesextractedfrom separatdearnedviews,
and have historically been associatedwith the subordinate
level of categorization. Advocates of view-based
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representations have recently claimed that basic level
categorization caremerge in anatural fashionfrom the
clusteringinvolved in making subordinatelevel distinctions
[1]. A growing body of experimentakvidencenow suggests
that performance omecognition tasks is proportional to the
distancefrom the nearesfamiliar view. This includesboth
error rate measures [2] and recognition time [3][4].

In everyday life wespontaneouslydentify objects,and create
categoriedfrom the diverseretinal images of an objeseen
from different viewpoints, or from the diverse individual

members of a species. However, this fundamental problem of

stimulus identity has onlyrecently begun to beaddressed
satisfactorily in computewision. While many geometric
methods have beedevelopedfor handling translation and
rotation in theplane [5][6], rotation in depth of diverse
objects hasbeen addressednost recently and successfully
through statisticabpproaches ith a rich feature spacé7],

and by anensemble ofradial basis function (RBF)neural
networks implementing a view normalization and
interpolation strategy [8].

While the RBF methodhas producedimpressiverecognition
rates onsmall objectworlds, thefundamental copputational
and coding principles (integration of spike rases rate codes
transmitted by specifimeurons) onwhich its status as a
biological theory resthave beerguestionedrecently in the
neuroscienceommunity [9]. The workpresented hereests
on a different view of neuronal function in higher levidion
in which neuronsperform the work of perceptionchiefly
through participation inrmedium and large scaleoscillating
ensembles.These oscillations are aperiodicdue to the
underlyingnonlineardynamics ofsuch ensemblenits, but
strong coupling can suppress thenlinearity orchaoslevel,
resulting in synchronizedchaos, clusters ofynchronized
chaos, oreven more regular phenomenasuch synchronized
periodic oscillations, perhaps with instabilities. The
underlyingcomputational principlefor higherspatialvision
are the interaction of nonlinearity and synchronization
phenomena with oriented coupling kernels.

An additionalimportantaspect othe networkdescribedhere
is the initial confinement othe networkstate to asubspace
(by the extraction of gprimal sketch inearly vision), which

then undergoes phase space expansion by thechaotic
dynamics,and ultimately reaches alecisionstate inanother



subspace. Thuswo related types of synchronization are
operating: the usuaense ophasesynchronizationand the
more abstract sense from graph theory and symbghiamics
which we designate "subspace synchronization".

Statistical population coding is usetheaning that statistics
over theentire population of unitsare measuredpbjects are
located as asubspace in the spacewhose dimensions are
defined by intervals in thedynamical phasespace of the
system. This is in contrast with gnostic cellpdacecoding
formulations, ordistributed coding irconnectionistnetworks
as activation of specific units. Instead, partial phase

synchronization after some iterations results in what might b

called transient subspace synchronization. In the latter, the
effective correlations between units are increaand, effective
dimension (phase space volume) is reduced.

Theseprinciplesare notivatedandsupported by aariety of
observations imprimary visual areasand various sub-regions
of inferotemporal cortexmplicated inobject recognition; for
reviews see [10],[11],[12]n addition, the work is compatible
with recent approaches itcomputervision which have been
designated as "shape through transformation” [13].

While building on past work orecurrentnetworksand high
dimensional coupled chaotic systems, thisstudy mnakes
substantive breaks with previous approaches.The most
important is tointroducetwo stages witha sharpchange in
the parameterstatherthan stationaryor smoothly changing
dynamics. It also breakswith typical recurrentnetworks by
concentrating on thieansient regimef dynamics rather than
on attractors. This staged processing, wiésynchronization
and partial synchronization dfyfnamicaltransients, motivates
our designation of the system a$ychronization Opponent
Cooperative Activity (Soca) network.

2 Methods

In this section wepresentthe basic formalism of aoupled
map lattice [14], followed by the extension to a tiraying
system. Inputimages in the systenare subjected to a
thresholding operation tproduce asilhouette. Thishinary
image ismappednto values0.0001and.9999 as an initial
condition which is transformed by the coupled map lattice.

2.1 Coupled Map Formulation

The coupled map computation consists ofnterleaved
diffusive coupling and nonlinear mapstagesproceeding for
some number if iterations or time stepsThe first diffusive

coupling step is expressed as:

Si(xy)=(1-c)s(xy)+
1
%[s<x,y+1>+3(x,y—1)+s<x+1y) +§(x ~1y)) @

where:d is the intermediate diffusion array,is the
currenttime step, X, y arethe spatialindices of the pixel
array S at the centef the diffusion neighborhoodS is the

statevariable ateachsite of the shapearray,andc is the
coupling constantestricted tothe range<0.0 to 1.0>. The
fact that diagonal elements notprocessedresults in an
orientation sensitivity of the process.

The secondcomputational unitpplied ineach time
step is the asymmetric logistic map:

. +10<S<10
1 =1-bF D.0<b<20 @

whereb is a bifurcation parameterchangingthis parameter
forces a structuredtransition betweenphasesfollowing the
sequence of attractor typdixed point — limit cycle cascade

f increasing period and instability intermittency— chaos

- {limit cycle cascade -chaos}. In contrast to the
symmetriclogistic, this function rangesfrom —1.0 t01.0,
and is thus suitabl®r modeling neuraldynamicswhich vary
about a background rate.

2.2 Synchronization Opponent System

The two stagegust describecconstitute a single iteration of
the CML system.Motivated to investigate slowedynamics
as modulating bifurcatioand coupling parameters t@chieve
some computational goal, we utilize two stagesignated as
synchronizationopponents. The first igdesynchronizing
(both phase and subspacesenses), while thesecond is
synchronizing.Each stage, orattractor frame consists of a
triple {b, ¢, s}, wheres is number of iterations in the stage.
The terminologyattractorframe is introduced toclarify the
point that the computation iperformed in the transient
evolution, rather than by reaching attractors.

Two suchframesare applied inturn. Duringevolutionary

search forthe parametessets, the firsstage isconstrained to
2-6 iterations, thesecondconstrained to2-9 stages. In the
evolved solutions, the total iterationgequired tocreate the
representatiospace rangefom 6 to 14 iterations, with a
mean of11.3 iterationsfor the 39 objectsn a 3D object

recognitiontask. The followingpseudocode sumarizes the
procedure.

procedure synchronizationOpponentNetwork
image = threshold(downSampl e(readimage)))
for iterations= 1totl
diffuselmage = filter2D(couplingMatrix,image)
image = logisticMap(diffuselmage,bl,cl);
end // Desynchronize stage
for iterations= 1tot2
diffusel mage = filter2D(CouplingMatrix,image)
image = logisticMap(diffusel mage,b2,c2);
end // Partial Synchronize stage
end // procedure

Because of the variation tlivergenceand convergenceimes,
a specific set of bifurcation, coupling, and iteration time
parameters(bl, cl1, tl, b2, c2,t2} has a characteristic
response to angiven image or family ofimages. Each
image can be considered as aet of overlapping initial



configurations of sizél+t2; bythe end ofthe Socaprocess
above, information about local configurations fronviadow
of size t1+t2 iscontained in eachnit (i.e. eachpixel in the
processing array). The set of initial configurations
comprising one image may héhly synchronizingor those

as the initial state. Suchparallelrecognizer framework for
picture languages with constrainedstatesandtransformations
was studied in aseries of paperdy Rosenfeld[16]. In
Rosenfeld’s formulation, theansition function atachpixel
is now a function of several tokens in some spatial

parameters, while those from another image may be less so.neighborhood,i.e. a cellular automataformalism. The

The intuition behind the network operation is that images inspace.

some categoryare considered gxroductions of a stochastic
language on an alphabeta whose symbols are local pixel
configurations. We seek parameters for the first
(desynchronizingtage whichfor this language,have the
appropriatedivergencerate matching parameterdetermined
characteristics ofthe second (synchronizing) stage. The
secondstagemust have characteristicallgvoidedregions of

decisionfunction is necessarily mdified by this larger state

Rosenfeld proposed several possibilities:

1. every spatial element reaches an accepting state;

2. any element reaches an accepting state;

3. one particular spatial elementeaches an accepting
state;

In the Soca networkand recognition strategy, we form a
representatiorspace,but that space consists of statistics

state spaceand state transitions such that images in the measured instantaneously during a high dimensional, paralld

category will converge near characteristisparsedistribution
or subspace.

2.3 Dynamical Recognizers for View
Normalization

One way to view a faily of images(such asoutline views

dynamics, ratherthan adirect map of the inputfeatures or
measurement space. Thesmtistics naturally support a
decision function; onsimply defines athresholddistance for
each classifier, and accepts anobject as aninstance of
language Lif the Euclidean distancérom the classifier's
occupancystatistic signature tothe correspondinglearned

of an object) is as a stochastic language, where the alphabet dgnature is within the threshold. The distances might vary by

particularorientationandtransitions probabilities ofarious
orderscapturethe adjacency orco-occurrence ofeatures. The
problem of learning to accept positive exemplars of a
languagewhile rejecting negative exemplatis known as

class, depending orthe clusterdensity ofthat class in the
representatiorspace. In practicghe present networkreats
the partition cells occupancies ofall classifiers as a
representatiorspace of a quasietric character, a®bjects

language induction. Classical machine learning approaches ighose orientatiorstatistics are similar will map to nearby

this problemconstruct a finitestate automaton taaffect

recognition. Formally, a finite statecognizer is ajuadruple
{Q %, 6, F}, whereQ is a set of states (with, gdenoting

the initial state),> is some finite alphabe® is a transition
function mapping x>0 Q, andF LI Q is a set of final or
acceptingstates A string of tokens fromalphabet is

accepted by the recognizers if, starting from initial statgtiie

sequence oftate transitionsndicated bythe tokens in the
string ends up in one of the final states in subset

The dynamical recognizer[15] is a quadruple Z,2,Q,G},
whereZ [0 R¢is a state spaceg(®) is the initial condition. %

is the input “alphabet”, whete particular closed interval iAd
corresponds to eaaliement inthis alphabet. . Q is the
dynamic, a sequence of transformatianZ — Z (one foreach
token ) with anassociatedet ofdynamical parameters; these
parametersare fixed for a particularrecognizerduring the
induction (training )process. G(Z) -{0,1} is the decision
function which maps one or more states in Haguence
produced bythe dynamic to an acceptéject decision. In
Pollack’s intial study cited above, only the final state and
token are used in the decision function.

The recognitiormethodhere is consistent withand extends
the dynamicalrecognizer framework tcigher dinensional
systems. A key difference is that the Socaaoparates on an
image “string” inparallel (thus thenetwork statespace has
dimensionality R, where N isthe number of pixels or
sampledmage elementsjandthe tokensare usednly once

points in therepresentatiorspace. We calthe space a
partition cell metric space. Thus anypresentedutline image
has a computable distance function to each recognizer.

2.4 Learning

To produce such a recognizer which can captureliffegences
in orientationstatistics in the familyf images, we employ
an evolutionarycomputing strategy. Ircontrast to typical
practice, the generated network is not tested on the
recognition task, but isvaluated omseveralabstractmeasures
on the partition cell distribution in an objective function.

The CML computationis relatively expensive onserial
hardware. Inthe present recognition implementation each
classifierpreviously generatedor different objectswould be
evaluatedduring evaluation of acandidatenetwork genotype.
Using Matlab, we presently evaluate 30&hdidatenetworks
(30 generations ofl00 individuals) inabout 45 minutes per
object on a 400Mz PowerPC 750; fullevaluation on the
recognition taskwould increasethe time by &actor of 200.
Evaluation of a singlgparameterset on 75 x 75 pixel test
images uses amost .18 ms, saecognition performance
approaches real time human performance for 20 objects.

The objective functiorused in learning must balance two
goals: 1) tight clustering of different views of an object and 2)
separation of classe®rresponding tovarious views ofother
objects. Aview normalization strategyoriginated in the
radial basis functionapproach toview based recognition)



servesthe tight clustering goal,with a cross-entropy term
comparing current output with previously stored
representations enforcing separation objects in the
representation space.

The objective function returning a fitnefswith low values
indicating higher fitness, takes the form

f =WyD -W(H +Hy) +Pynch (©)

whereW, is the inter-view distance omormalization weight
andW., is the entropy weightD, theinter-view distance sum
for j views is

b Ok O @
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wherey, are the occupancies dfpartition cells for each of
thej views.

H, is the cross entropy oKullback-Lieber information
measure between the current reference distribution C and
the database of Nbject distributions(signatures) Swith k
bins:

N k C
2 3Cjlogy —— ®)

H, , the Shannon entropy tife currentsignaturewith k bins
is

k
Hg = _le log, S 6)

and
[1000if max(§) < synchPenThresh

B) otherwise

The parameter synchPenThregls empirically determined as
.15. The following tableindicatesresults of varying the
synchronization penaltyhreshold onthe nearest neighbor
match of the Oview.

Psynch =

Table 1. Error rates for objective function weight sets
W, We SynchPenThresh| Error Rate
%
20 2 4 45
20 2 ,25 24
20 2 .15 15
min Max .15 40

The table above is a comparisoneffiects ofdifferent sets
of objective functionparameterweight on performance of
nearest neighbamatchwith 20 objectsandtraining with all
views. The last row indicatékat rather thatwo terms with
weights, theobjective wasformulated as aminimizing the
ratio distance / entropy. The set \W20,W=2,

SynchPenThresh =.15 waslected ashe sandard weight set
for learning and recognition trials.

2.5 Recognition

Having generatedrepresentations by searching fiynamics
which performboth view normalizatiorand class separation
in the spacevia a cross entropy term, recognition of the
objects isimplemented by siply processing a targetiew
with the parameterset {bl,cl,tl,bl,c2,t2} defining each
classifier, thercomputing theEuclidean distance to saved
histogram or distribution obtained by averagaaghpartition
cell occupancy value across all views of the original object.
The number of cells (64 in thaurrent inplementation) is an
implicit parameter. The object &ssigned tahe classwhich
results in the minimum distance to the original signature.

3 Data Selection

Much recent experimental visual psychology aedroscience
research othe on 3-D object recognition hasorkedwith a
family of objects commonlyeferred to agpaperclips. For
continuity with this research, we performed network
simulations on a set of paperclip objects previously studied in
psychophysics. The image sekesigned inthe visual
psychology lab oM. Tarr, and consists of 39 paper clip
objects, withseven viewgrovidedfor eachobjectrotated in
depth. Each object ia chain of5 cylinders,with a variable
joint angle connecting each pair. The vieavs separated by
30°, ranging from —90to 9C°. The objectsvere originally
developed toanswerquestionsregardingthe recognition by
components or geon theory of Biederman[17]. The set
consists of foucomplexity groups with 0, 1, 3 or Sunique
geons substituted at some position in the chain.

Similar paperclip objects (corresponding to the Ilow
complexity set) were used in human psychophysics
experimentd2]. In these experiments, subjeetere trained
with motion sequences of 2-D views, giving an impression of
a 3-D object through the kinetidepth effect. In a two-
alternativeforced choicetask on their object set, with single
static views of darget ordistractor,the miss rate (failure to
indicate amatch when thearget was showngveraged 30%,
indicating that the task is rather difficult. Végceecthis rate,
but higher complexity objects are more easily distinguished.

Fig. 1. Two silhouette views of the sampgaperclip
object, illustrating the extreme nature of the distortioe to
rotation indepth. The left views the 0°, the right view is

' One object in the last group was duplicated in the original set, hence
39 rather than an even 40.



+90°. Theraw paperclipimage set wagrovided courtesy of
Michael Tarr, Dept. of Psychology, Brown University.

The specific object setsed herevas alsoused in astudy by
Tarr and colleagueattempting todiscriminate betweexiew-
based andtructural theories [4]. Inhis study no training
period was provided; subjectssimply had to judge whether
two views shownbriefly (200 and 100 ms, separated by a
mask stimulus)were the same ordifferent. Under these
conditions, the baseline set of shafaktubes withno geons
inserted)were essentially notrecognizable bysubjectswhen
presented in widely separated views.

4 Results

After asmall set of trialgo establishthe objectivefunction
term weights, aset of learning and recognition trialswere
performed. The number of training views wasried from
two to seven, beginning with-90,-60} views and adding
successive views in order. Two variants of the cergsopy
approachwere performedfirst a referenceview was chosen,
and the partition cell meartcupancies oprevioussignatures
was compared to that view. In teecondthe mearpartition
cell occupancy ofall views wascompared tothe mean of

previous signatures. In the single set of experiments, no

substantial difference in performancewas found for this
variation. Thesetwo variationswere eachestedwith object
worlds consisting of 20and 390bjects toassessecognition
performance scaling with number of objects.During
recognition trials, all views oévery objectwere presented to
compute error rates; thefollowing figure summarizes the
results.

Performance of view normalization
90

20 ref

©
o

~
=}

average % correct across all views, nearest neighbor match

30 I I I I I I I I I |
2 25 3 35 4 4.5 5 55 6 6.5 7

number of training views used

Fig. 2. Summary of nearest neighbor

We observe that while each of the two stages over time
exhibits a general trend toward increasing or decreasing phase
space volume, the volume varies non-monotonically from
step to step in the transient regime. We tested the
performance of a CML with stationary dynamics ( i.e. a
single stage network) and found it was surprisingly effective,
when given the same upper bound of 16 iterations as the two
stage network. The following table shows results of 10 trials
using the same learning parameters; additional testing is in
progress to assess whether these trends are statistically
significant. It appears that the underlying normalizing
recognizer mechanism can function with a single stage, but
that both the best recognition rates and the mean number of
iterations (recognition time) are slightly improved by the two
stage process.

100
90
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40
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20
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0

@ single stage
m two stages

best mean mean

rec. iter.

rate

rec.
rate

Fig. 3. Best and mean recognition rates and mean
iterations as a percent of total allowed iterations for single
stage (stationary and two stage (i.e. Soca network) with all
seven views provided, 10 trials each with identical learning
parameters.

5 Conclusion

The Soca network approach shows promise as a machine
vision technique. When adjusted for an equal number of
training views the network achieves recognition performance
comparable to other recent view based approaches, although
to date a common test suite for rotation in depth has not
emerged, and the complexity of objects and amount of raw
information in images varies [11]. In a single computation
specifiedby few parameters, the network performs both local
feature integration (by the diffusion process) and solves the
normalization of views problem. In contrast to other
approaches, no global statistics of the object world are usedto
adjust weights or select optimal center views.

The system captures aspects of human psychophysical

classifier performance. Both the Soca system and the Chorus RBF

recognition rates with training on 2-7 views, for 20 vs. 39 ensemble show a decrease in performamitte increasing

object worlds,
computations.

and for reference and mean cross-entropglistance from training views when a subset of views is used

for training. However, the Soca network showesiation in
the time to reachthe population code This parameter is
implicit in taking iteration counts as a parameter during



learning, suggestinghat optimal readout of acomputation
occurs at a particulatime or slow wave phase, since the
system is not reaching an attractor.

The resulting changes in occupancy of dynamical stages are
accord with observed stimulus related fluctuations in
correlationof multi-neuronexperiments[18], with the time
course of changes ilocal field potential coherence between
primary visual cortexand IT [19], and with stimulus-linked
aperiodic oscillations [20]; in addition, we believe
observations of stimuluiked slow (4-7 Hz) oscillations in
the temporal pol¢21] support thepresenttheory; wewould
predict that slow wave bifurcation and coupling controls
would befed into regionsperformingthe normalization task
both in object memory formatioand in primed search Area
TEO is the most likelycandidate due talirecttemporal pole
connections, thouglarea V4 has morelocalized receptive
fields like the present system.

The small advantagés reactiontime anderror rates(Fig. 3)
seen in ourpreliminary comparison of stationagnd two
stage "Soca-stylelynamicssuggest that evolution exploits
slow wave bifurcation and coupling control to improve the
recognition performance of stationary systems. Further
testing is required to ascertain whethethese trends are
statistically significant;however, moreoptimization of the
learning method¢mutation rates, possible use Ghussian
mutation) should beperformedfirst, so that thevariance in
recognitionratesbetweentrials is minimized prior to such a
comparison.

As a biological theory, webear the burden of explaining
observations oépecific neurons whosactivity increases for
specificstimulus inIT regions (for review, see22], [23]).
Two explanationsare envisioned.First, such neurons may
simply befeedinginto a morecomplex computatiorwhich
the organismactually uses;the experimenter isable to
distinguish thestimulus from a limitedrange ofinputs, but
might not beable to doso with abroadrange ofstimulus.
Alternatively, these observationsould be indicative of
readout assemblies whichare sensitive to particular
combinations of instantaneou®r short time averaged)
oscillation frequenciescorresponding tdhe computation and
coding process o& Soca-like networkattempting to map
different views or other transformationso a common
subspace. Observation§ multiple active areaswith optical
recording[24] have beerinterpreted asactivation of RBF
style prototypeunits, situatingan object in arepresentation

hypotheticalreadoutassemblies remains aareafor future
work.
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