Synchronization and Partial Synchronization of High Dimensional Chaotic Systems

D. DeMaris 11/16/2000

Overview

- Definitions: Oscillations, Coupling, Synchronization
- Maps as model oscillating systems
- Choices in system design parameters
- Five examples of synchronization in cognitive and perceptual processes
- Conclusion: Where/ How to Read Literature

Synchronization in Maps

- Synchronization or Clustering phenomena in coupled maps are interesting because:
 - Only form of equations matters, not "meaning" or interpretation of state variables - theoretical results applicable at various scales
 - Computational structure effective connectivity of state space "symbols" with minimal changes in network topology, few parameters

Network Parameters for Coupled Map Systems				
Input	Coupling	Bifurcation	<u>Readout</u>	
1 cell, m cells, all cells	Diffusive/ Laplacian or Difference, Local/Global	Maps of varying topological structure	Instantaneous Distribution	
Initial (One Shot)/ Periodic Driven	Fixed/Variable	Fixed/Variable	Time average	
	Spatially Homogenous/ Inhomogeneous	Spatially Homogenous/ Inhomogeneous	Spatial Patterns (extracted by Local Mean Field)	
State, Bifurcation, Coupling	Input / State Dependent (Hebbian)	Input / State Dependent	Particular unit, Units above (frequency or coherence) threshold	

Self-organized hierachical structure Ito1. Ito and K. Kaneko, Self organized hierarchical structure in a plastic network of chaotic units, Neural Networks 13 (2000) 275-281. Warning: phase used two ways Circle map state variable-> phase; input is "phase reset" Coupling and bifurcation k give a plot of "phase regimes" (coherent = totally synchronized)

Ito & Kaneko: Self-organized hierachical structure

- Key results:
- Input, while in weakly synchronized phase regime, induces characteristic layered structure for input.
- Units are desynchronized; order apparent only from coupling matrices and structure implied by inter-unit coupling above arbitrary "thresholds"
- Application and readout unclear

Yamanoue: Attention with Synchronization

- Yamanoue, Y. Effect of complexity in an oscillatory neural network, Fuzzy Sets And Systems (82)2 (1996) pp.253-263
- Cells have tendency for desynchronization; interactions enhance synchronization (coherence), segmenting into groups.
- ONN can focus, defocus, shift attention without additional mechanisms or control

Segmentation with Periodic Coupled Wilson-Cowan

- S. Campbell, S. and Wang, D. Synchronization and Desynchronization in a Network of Locally Coupled (Wilson-Cowan) Oscillators, IEEE Trans. Neural Networks 7 (1996) 541-554.
- Wilson-Cowan oscillators in periodic regime
- Local Diffusive Coupling + Hebbian Coupling with "Global Separator"
- Segmentation only demonstrated with well separated objects
- Limited Capacity : 9 objects

Segmentation with Laplacian (Difference) Coupling, Chaotic

- 1. I. Zhao, E.E.N. Macau, and N. Omar, Scene segementation of the chaotic oscillator network, International Journal of Bifurcations and Chaos 10 (2000) 1697-1708.
- · Wilson-Cowan oscillators in chaotic regime
- Laplacian coupling supports segregation into groups as units become synchronized disappears, they become uncoupled and remain synchronized
- Chaotic oscillation : unlimited object capacity BUT ...
- Complex readout 3-4 sequential crossings of partition cell (poincare section) with tagging to identify which oscillators identify a group

Synchronization Opponent System for Object Recognition

- DeMaris, D. Soca Networks: Computing similarity with nonlinear transients in coupled map lattices. Dissertation, ECE (University of Texas, Austin, 2000)
- Objects presented as synchronized outline on "background rate field" to local diffusively coupled logistic map lattice
- Two Stages (Synchronization Opponents) Desynchronizing, Synchronizing
- Sample States after two stages partition cells form a representation space
- Evolutionary Search used to learn "normalized" object

Stimulus equivalence for objects Sample during synchronization convergence cycle

• Normalization of 2D projections of 3D object - find dynamical parameters which produce most similar distribution across views of each object, using genetic search.

• Minimize collisions (different objects mapping to similar views) by maximum cross-entropy during learning and limits on synchronization.

Mean Distribution of each bin for all objects

representation					
<u>Input</u>	Coupling	Bifurcation	<u>Readout</u>		
1 cell, m cells, all cells	Diffusive/ Laplacian or Difference, Local/Global	Maps of varying topological structure	Instantaneous Distribution		
Initial (One Shot)/ Periodic Driven	Fixed/Variable	Fixed/Variable	Time average		
	Spatially Homogenous/ Inhomogeneous	Spatially Homogenous/ Inhomogeneous	Spatial Patterns (extracted by Local Mean Field)		
State , Bifurcation, Coupling	Input / State Dependent (Hebbian)	Input / State Dependent	Particular unit, Units above (frequency or coherence)		

Summary: synchronization in coupled oscillators or maps

- When reading literature:
 - Look for coupling types
 - Look for number of iterations
 - Thousand of iterations may be hard to justify as biological system
 - Look for readout strategy, biological realism
 - Global or long range coupling from desynchronized state can synchronize rapidly under strong coupling, which can be removed to maintain cluster state

Journals for synchronization modeling work

- Physica D
- IEEE Trans. Neural Networks
- IEEE J. Circuits and Systems
- Int. J. Bifurcations and Chaos
- Neural Networks
- Neural Computing