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Synchronization and Partial
Synchronization of High

Dimensional Chaotic Systems

D. DeMaris  11/16/2000

Varieties of synchronization

• At the level of multi-channel spike
recordings, we see elevated rates of
coincidence described as effective coupling

• Macrostate variable can be average phase
relative to offset for mean frequency -
resulting in clusters in phase variable
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Overview

• Definitions: Oscillations, Coupling,
Synchronization

• Maps as model oscillating systems

• Choices in system design parameters

• Five examples of synchronization in
cognitive and perceptual processes

• Conclusion: Where/ How to Read Literature

Varieties of synchronization

• At the level of local field potentials
(Freeman, Bressler) we see apparent
oscillation across space - similar time series
but different amplitudes

• Macrostate variable is pulse density,
sometimes called ensemble average
frequency
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Maps as prototype chaotic system

xt +1 = f x t( ),t = 0,1...

Dimension: one macrostate variable standing for average
behavior of an ensemble

Higher dimensional systems - N maps with
some form of coupling between units.

Synchronization in maps

For high dimensional system (N macrostate variables)
coupled in some graph ( 1 D ring, rectangular lattice, 
Arbitrary graph), we can speak of synchronization:

x t
i − xt

j → 0, t → ∞Total: 

Partial:  Some map units obey (2), others do not; or multiple 
Groups G1, G2,...Gm where (2) is true for units in 
System has effective dimension 1 < m < N

System effectively becomes one dimensional;
also called “coherent”

(2)
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Synchronization in Maps

• Synchronization or Clustering phenomena
in coupled maps are interesting because:
– Only form of equations matters, not “meaning”

or interpretation of state variables - theoretical
results applicable at various scales

– Computational structure - effective connectivity
of state space “symbols” with minimal changes
in network topology, few parameters

Synchronization in Maps

• Clustering phenomena in maps (or other macrostate
oscillators) are readily associated with perceptual and
cognitive phenomena

– Segmentation and grouping of objects, parts

– Formation of hierarchies

– Flows of attention

– Formation of representation spaces

– Organization of spatial fields
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Network Parameters
for Coupled Map Systems

Input Coupling Bifurcation Readout
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Self-organized hierachical
structure

• Ito1. Ito and K. Kaneko, Self organized hierarchical
structure in a plastic network of chaotic units, Neural
Networks 13 (2000) 275-281.

• Warning: phase used two ways

• Circle map state variable-> phase; input is
“phase reset”

• Coupling ε and bifurcation k give a plot of
“phase regimes” (coherent = totally
synchronized)
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Ito & Kaneko: Self-organized
hierachical structure

• Key results:

• Input, while in weakly synchronized phase
regime, induces characteristic layered
structure for input.

• Units are desynchronized; order apparent
only from coupling matrices and structure
implied by inter-unit coupling above
arbitrary “thresholds”

• Application and readout unclear

Ito & Kaneko
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Yamanoue: Attention with
Synchronization

• Yamanoue, Y. Effect of complexity in an
oscillatory neural network, Fuzzy Sets And
Systems (82)2 (1996) pp.253-263

• Cells have tendency for desynchronization;
interactions enhance synchronization
(coherence), segmenting into groups.

• ONN can focus, defocus, shift attention
without additional mechanisms or control

Segmentation with Periodic
Coupled Wilson-Cowan

• S. Campbell, S. and Wang, D. Synchronization and
Desynchronization in a Network of Locally Coupled
(Wilson-Cowan) Oscillators, IEEE Trans.  Neural
Networks 7 (1996) 541-554.

• Wilson-Cowan oscillators in periodic regime

• Local Diffusive Coupling + Hebbian Coupling with
“Global Separator”

• Segmentation only demonstrated with well separated
objects

• Limited Capacity : 9 objects
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Segmentation with Laplacian
(Difference) Coupling, Chaotic

• 1. I. Zhao, E.E.N. Macau, and N. Omar, Scene
segementation of the chaotic oscillator network,
International Journal of Bifurcations and Chaos 10 (2000)
1697-1708.

• Wilson-Cowan oscillators in chaotic regime

• Laplacian coupling supports segregation into groups - as
units become synchronized disappears, they become
uncoupled and remain synchronized

• Chaotic oscillation : unlimited object capacity BUT ...

• Complex readout - 3-4 sequential crossings of partition cell
(poincare section) with tagging to identify which
oscillators identify a group

Synchronization Opponent
System for Object Recognition

• DeMaris, D.  Soca Networks: Computing similarity with
nonlinear transients in coupled map lattices. Dissertation,
ECE (University of Texas, Austin, 2000)

• Objects presented as synchronized outline on “background
rate field” to local diffusively coupled logistic map lattice

• Two Stages (Synchronization Opponents) -
Desynchronizing,  Synchronizing

• Sample States after two stages - partition cells form a
representation space

• Evolutionary Search used to learn “normalized” object
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Stimulus equivalence for objects
Sample during synchronization

convergence cycle
• Normalization of 2D projections of 3D object - find dynamical parameters

which produce most similar distribution across views of each object, using
genetic search.

• Minimize collisions (different objects mapping to similar views) by maximum
cross-entropy during learning and limits on synchronization.
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DeMaris Soca Network for shape
representation
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Summary: synchronization in
coupled oscillators or maps

• When reading literature:

– Look for coupling types

– Look for number of iterations

• Thousand of iterations may be hard to justify as
biological system

– Look for readout strategy, biological realism

– Global or long range coupling from desynchronized
state can synchronize rapidly under strong coupling,
which can be removed to maintain cluster state

Journals for synchronization
modeling work

• Physica D

• IEEE Trans. Neural Networks

• IEEE J. Circuits and Systems

• Int. J. Bifurcations and Chaos

• Neural Networks

• Neural Computing


