Chapter 4: Dynamics of Spatially Extended Nonlinear Systems

As background for the experimental work in the next chapter, the fundamental
concepts of nonli

near maps and chaotic systems are now introduced, followed by extensions to
high dimensional systems, and particularly to uniform spatially extended sy%tenise
aim is not to rigorously develop the material, but to survey the field in enough breadth
and depth so that the meaning of the networks and algorithms treated in this study
becomes transparent. Many texts providing more depth in low dimensional dynamical
systems exist; Ingraham (Ingraham 1991) is a concise survey. To date, no comparable
surveys of high dimensional or spatially extended systems exist; furthermore,
terminology varies considerably across different disciplines. A special issue of the
journal Chaos with an introduction by Kaneko is one possible point of @daryeko
1993), along with a collection of papers on various applications (Kaneko 1993).

There are two approaches to problem solving using complex dynamics. Given
the form of a desired outcome, search methods in the control parameter space can be used
without requiring deep understanding of the underlying dynamics. The treatment of
dynamics, then, is to provide the rational for the search methods and constraints on search
developed here.

The other approach involves analytical treatment of the problem so that exact
solutions, or at least bounds on the state space are obtained. At the time this project was
initiated, the prospects for analytical solutions to problems where the desired outcome
involved state distributions on sets of coupled oscillators seemed remote. Accordingly, |
hypothesized that search methods might prove effective, even in the absence of a strong
theory on bounds of the technique or direct solution methods; the results presented in the
next chapter support this strategy. However, techniques have emerged which might lead
to more direct solutions than the search methods used here. | will mention relevant
mathematical approaches briefly in this review so that it is a useful overview of the
evolving state of the art.

In the following discussion, many important terms from the literature of
dynamical systems are introduced. For the benefit of readers encountering this material
for the first time, these are highlighted in bold type.

ONE DIMENSIONAL NONLINEAR MAPS: DEFINITIONS AND TERMINOLOGY
A map is an iterated difference equation

S+1=1(S)
whereS is a real valued statef, is some function mapping§ within a subset of
the real number domaR, and t is a discrete time step. Iteration implies that the result of

18 The term complex systems, to the extent that it is standardized, refers to spatially extended
systems.
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applying the function at time is fed back into the computation at to produce the result at
timet+1. The sequence of state®,S,...S" by iteration for t=1,2,...T , is the image of

the map. The sequence of states preceding any state Sie pre-image of the state.

The terms trajectories and orbits also appear in the literature for the sequence of states,
with trajectories used for continuous systems and orbits normally used for discrete
iterations.

Nonlinear maps use some nonlinear funcdfiod, resulting in diverse types of
asymptotic behaviors; these asymptotic behaviors are reached afiasient regime of
variable number of iterates. The duration of this transient depends on the exact initial
conditions as well as the exact function and parameters. This variety in transient length
and complex structured of the trajectories approaching a stable state, supports the
algorithms for forming representation spaces and performing pattern recognition tasks. |
will explore this structure by some simple parametric studies in the next chapter.

An attractor of a map is the asymptotic state sequence after many iterations, if
such an asymptotic state exists. The term attracting set or limit set is also used. The
basin of an attractor is the set of all pre-image states which converge to the attractor,
after some number of iterations.

One crucial distinction for a system is whether for a particular fixed control
parameter, different inputs converge to a single attractor or to one of multiple attractors.
For the logistic map used here, a single attractor exists for all input states, but the basin
structure and transient sequences leading to the attractor are highly variable depending on
the particular instantiation of the map (i.e. the exact value of the chosen control
parameters).

A dynamical system with multiple coexisting attractors can be used as a model
for perceptual and memory processes. Training a supervised neural network consists of
shaping the dynamics evolution of a network through its parameters such that the
attractor basins map input states into the categories (attractors) desired. This basin
structure can be considered as an intrinsic categorization by partitioning the input states
into categories corresponding to the attractors.

A well studied map used as a network node (cell, neuron unit, site) in the models
described later in this chapter is the asymmetric logistic map:

The equation for the asymmetric logistic map is

L +1.0<S<10
w1 =1-bS H.0<b<20

whereb is a bifurcation parameter; changing this parameter forces a structured
transition between phases following the sequence of attractor types, which are introduced
below:

fixed point — limit cycle cascade of increasing period and instability
intermittency— chaos- {limit cycle cascade- chaos} ...

19 A nonlinear function is one for which the solutions are not subject to the principle of
superposition, i.e., the solutions do not add linearly to generate a new solution .
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The changes in attractor type occur abruptly, even with smooth changes in the
parameter. The brackets and ellipses indicate that beyond the transition to chaos, there
are windows of periodic behavior in the bifurcation parameter values surrounded by
regions of chaos, and this repeats infinitely.

A fixed point attractor is one for which every initial state leads to the same
value. Alimit cycle attractor is a repeating state sequence of pétjall initial states
lead to the sequence, though fiese of the sequence (relative to time t modBjomay
vary. A limit cycle attractor may also be referred to psréodic attractor.

This state sequence is the simplest formosillation. In continuous systems
theory and circuit analysis, the conventional meaning of oscillation is a limit cycle or
periodic oscillation. In nonlinear dynamics, more complex aperiodic motion is also
referred to as oscillatory, which may be a source of confusion in discussions between
neuroscientists and nonlinear dynamics investigators.

A chaotic attractor is an aperiodic orbit which exhibits sensitive dependence on
initial conditions. A system can be more or less chaotic, essentially a measure of how
rapidly nearby initial conditions divergd.yapunov exponents can be computed for a
system as a measure of nonlinearity. Since the rate of divergence varies over the set of
initial conditions, a system is commonly characterized bytdahgest Lyapunov exponent
over the full range of possible initial conditions.

Typically the transition points between these phase regimes are visualized by
bifurcation trees for systems with one bifurcation parameter, or phase space plots for
coupled systems with multiple parameters governing transitions between regimes.

Time series (orbit) plots under various initial conditions, the bifurcation tree for
the map, and an example phase space plot are shown in the following figures.
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X(t)

logistic with b=1.20 , x1 init=0.5, x2 init =0.1, 60 iterations
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Fig. 14. Time series oorbit of the mapx, ,, =1-bx* with x =0.5 and x

=0.1 initial states overlaid. The bifurcation parameter b set to 1.2, leading
to a stable period 2 attractor for any initial condition.
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x(t)

logistic with b=1.70 , x1 init=0.5, x2 init =0.5001, 60 iterations
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Fig. 15. Time series of initial states x1=0.5, x2=0.5001 superimposed with
bifurcation parameter b=1.7, beyond the transition to chaos at b=1.544.

The separation of initial conditions differing by .001 illustrates the
phenomena of divergence of orbits of nearby initial conditions.

The

Lyapunov exponent is a measure of divergence (positive exponent) or

convergence (negative);
while the previous figure is convergent.
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Fig. 16. Bifurcation tree showing asymptotic states of attractors as the
parameteb is increased. 512 random initial points are chosen for leach
value and the logistic map is iterated for 100 time steps before plotting.
Where multiple state s points exist for the givgna periodic, noisy
(unstable) periodic or chaotic attractor is present; the actual state values
are cycling between these y axis points as shown in the time series.

Depending on the value of the bifurcation control parantgttre attractor state
sequence may be a single state (fixed point), periodic oscillation between a few states
(limit cycle), or a pseudo-random visitation of the state space points but within a bounded
area (strange attractor, chaotic attractor). Each of the attractor types can be considered as
a phase or phase regime of the dynamics, analogous to thermodynamic phase in
classical physical systems. These phase regimes are boundeditsl values of the
control parameters. When a control parameter is modulated to cross a point where
attractors appear or disappear, and in particular changetopelogical structure, the
crossing event is known dsifurcation. Bifurcations between qualitatively different
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regions of phase space, such as crossing the transition from limit cycles to chaotic
behavior, are termagohase transitions.

Bifurcations occur as stability is lost for the attractor. This manifests in slow
convergence time, and an increasing number of trajectories which lead away from the
attractor. As the bifurcation parameter is increased into the chaotic regime, the unstable
periodic orbits remain a controlling influence on the dynamics, effectively forming a
“skeleton” for the dynamics.

The evolution or motion of a chaotic attractor in one dimension can be
understood as cycling between setauin$table periodic orbits (UPO); the emerging
theory of control in low dimensional chaotic systems depends on analytically identifying
such UPOs, and applying perturbations to the system to suppress chaos (Barreto,
Kostelich et al. 1995). The persistence of such UPOs in chaotic behavior may have
implications for the probability of reaching a particular state during the transient
evolution of a system, or on the temporal statistics of a time series. This area of
dynamics, particularly regarding transients, is not well characterized at the time of
writing.

In non-biological systems, bifurcation parameters are typically constant or slowly
changing with respect to the equations of motion. It is possible, and assumed by many
researchers, that rapid bifurcation is a key aspect of the performance of biological
systems.

SPACES, DIMENSIONS, M APPINGS

At this point in the discussion, we must revisit the notions of space and
dimension which have already been introduced, albeit in the context of cognitive theories
of similarity as a space of features. Since | will return to that idea, but must use the term
space in the dynamics context, the distinction should be made clear.

In the definition of a map given above, | emphasized the discrete nature of the
process by using the term state. However, much of the theory of nonlinear dynamics —
and more generally topology, of which it is a branch — is formulated in terms of
continuousspaces. Indeed, the underlying space must be metric by the same criteria
described earlier. When referring to the evolution of dynamic variableslii® the
dynamics literature normally usgshase space, indicating the space of the mapping
dynamics.

Space is also encountered in the context of spatially extend systems or networks
— here, it has essentially its commonplace meaning, with oscillating computational units
or cells located in1* (a line or ring) or(J2 (a lattice or torus). Networks can also simply
be defined on an arbitrary topology or graph, without reference to any embedding in real
space.

The termdimension must also be revisited. In the context of metric spaces,
dimensions typically refer to some measurement or feature, with objects represented as a
point (or perhaps as a subspace) in the space. For hidden layer neural network
representation spaces, the dimensions may be less directly related to the input; recall that
the output units of each RBF classifier in the Chorus of Prototypes system correspond to
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a dimension in the space of prototypes. In Edelman’s terminology, these can be
distinguished as proximal (representation) and distal (feature) spaces. In dynamics and
oscillatory neural network theory, dimension typically refers to the number of state
variables in a system of coupled equations, such as the number of unifeelich af
identical connected units in a spatially extended system. There are additensat ed
dimensions of the orbit itself, characterizing the dynamics and information flow
(Grassberger 1991).

We will also be interested in synchronization of oscillating units. In this case,
there may be atructural network dimension (the number of units) and afifective
dimension. When a network of coupled oscillators is fully synchronized, all units
evolve in parallel and thus behaaféectively as a one dimensional system.

In the system described here, all of these senses of dimension must come up at
least briefly. In equations, | will follow the following notational convention: the variable
N will be used for the network dimension, while the variaklewill refer to the
dimensionality of the representation space. Effective dimensions will be mentioned but
will not require standard notation.

HIGHER DIMENSIONAL SYSTEMS. SPATIOTEMPORAL CHAOS

The logistic map introduced above is a typical discrete time nonlinear dynamical
system with a single state variable. However, this formalism can be extended to
networks of coupled nodes (cells, units) where each node has a real valued state. Such
networks are known asoupled maps. When coupled maps are arranged in a regular
spatial array, the term seen most often in current literature is coupled map lattice,
introduced by Kaneko (Kaneko 1989). Other investigators have referred to similar
structured spatial systems of nonlinear elements as cellular neural néd(Gtksa and
Yang 1988), fractal chaos networkBerez and Massotte 1987), cellular dynamical
systems (Abraham, Corliss et al. 1991). Due to the iterative or feedback network
topology on each node, these systems may be considerecuasent neural networks
with non-monotonic or bifurcating units, and some investigators have described work
in those terms (Farhat and del Moral Hernandez 1996). Coupled map models with local
unit dynamics at the transition to chaos (known as the Feigenbaum accumulation point)
have been designated as Feigenbaum networks (Carvalho, R. et al. 1999), and were
investigated for utility in pattern recognition tasks by the present author under the name
chaotic reaction diffusion networks (DeMaris 1995). Related systems with discrete state
values, discrete time, and typically boolean mappings (transition functions) are known as
cellular automata; many conceptual tools applicable to coupled map systems have been
addressed in the cellular automata literature (Wolfram 1986). Some investigators have
directly analyzed transformations between the two system types (Chate and Manneville
1989).

20 Cellular neural networks (CNN) have been defined in a more general way to encompass both
continuous and discrete time systems; the term is more likely to appear in engineering literature
(especially circuit theory). For discrete CNN and CML | find no clear distinction apart from
terminology.
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For higher-dimensional and coupled map systems, the network state is a vector of
the states of the constituent nodes. The network attractor, if one can be said to exist by
virtue of sufficient coupling, is &equence orimage of this vector. For spatially
structured dynamical networks, a spatial pattern formation beRavadrthe level of the
entire network is evident, emerging from the cooperative and competitive interactions
between the patterns and dynamics in the coupled nodes.

This network-level pattern formation may be tuned by controlling the phase
regime of the individual nodes, the humber of connections between nodes (neighborhood
size), the ratio of excitatory to inhibitory connections (for suitable activation functions),
or the coupling strength between nodes.

The original papers on spatial pattern formation in locally coupled map lattices
(Kaneko 1989); (Kaneko and Tsuda 1994) introduced many visualization techniques and
correlation measures to characterize the rich behavior in various parameter regimes. In
general, the long time behavior investigated by Kaneko is not applicable to the system
described here, and as argued in the neuroscience review, is probably not applicable to
rapidly developing perceptual processes. The present work investigates and uses only
brief transients (10-16 iterations), while Kaneko’s original simulations of locally coupled
maps examine the dynamics after 10,000 steps, omitting any consideration of the
transients.

The term attractor is sometimes used at the network level, but is generally less
useful for spatial lattice systems with weak or local coupling, where oscillations and
competition betweertlusters (oscillation modes, sites in the same state, attractor, or
basin) formdynamic patterns. Theevolution of a network from an initial state under
relatively low coupling results in an organization in which patterns of continuing activity
between interacting cells are spatially bounded by "frozen" areas, in which the
neighborhood interactions reach a stable state. The local active areas are referred to as
domains, while the frozen separating regions are domain boundaries. In a sense, the
network organizes itself into sub-networks, with the activity pattern in a domain more
conventionally related to the definition of an attra@for.

Systems with strong random coupling or global coupling, in contrast, can be
shown to reach an attractor which may be equivalent to a one dimensional map; this
synchronization process is taken up latet.nter mittency, or chaotic itinerancy, is a
phenomenon appearing in a small, weakly chaotic region of the parameter space, in
which the dynamic behavior is a blending or linking of unstable periodic attractors
existing in isolation in the more ordered regions of parameter space. Over time,
individual periodic attractors are separated by sequences of intermittent chaotic
transitions. This particular dynamics has been proposed by Tsuda as a supporting
mechanism for binding (Tsuda 1992) and may offer advantages as an associative memory

21 Kaneko uses the term spatial bifurcations for formation of separated islands or domains; |
would prefer to reserve that term for dynamical scenarios in which spatial patterns actually
influence local or global bifurcation parameters.

22 The concept of a domain as used by Kaneko applies only when the lattice has been iterated for
many (> 10,000) generations, so that transients have died out.
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which overcomes the limitations of previous parallel distributed processing networks
with respect to the issue ebmpositionality (the recovery of bound or integrated
features in a composite memory).

Various network or neighborhood topologies have been reported in the literature
on spatio-temporal chaotic systems. Network nodes magchdy coupled to adjacent
nodes,diffusively coupled to a small region of the lattice with connection strength
weighted by distanceglobally coupled to every noderandomly coupled to a non-
spatially localized set of neighbors, or some blending of these conditions. The coupling
may take any functional form, including diffusive (multiplicative), difference or
Laplacian coupling, or time varying functions. Coupling may sgenmetric or
asymmetric between adjacent units; it may bemogeneous over the spatial extent of a
lattice, orinhomogeneous. The terms uniform and regular have also been used to denote
homogeneous bifurcation and/or coupling.

Coupled Map L attices

A coupled map lattice (CML) is a dynamical system with discrete time, an
extended field of state variables in discrete space, and continuous state. Of course, we
approximate continuous states with floating point values in map computations, so strictly
speaking chaotic attractors must all in reality be periodic with very high period. Kaneko
(Kaneko 1993) describes the generic CML modeling process for a physical system as
follows:

1. Choose a set of field variables on a lattice. Typically these variables represent
macroscopic (distributed) qualities, such as temperature, fluid velocity field, local
concentration of a chemical substance, or in our case neuron pulse density in a local
population.

2. Decompose a process into independent units, such as convection, reaction, diffusion,
etc.

3. Replace each unit by the simplest possible parallel dynamics on a lattice, consisting
of a transformation function at each lattice point or a coupling term among suitably
chosen neighbors.

4. Carry out each process successively. In the present model, this means that at each
iteration, a diffusion step is performed, then a reaction step.

The logistic map was originally chosen for its well understood properties rather
than any explicit biological motivatidh for that particular nonlinear function. The
equation is known to be numerically stable when the state (and perturbations or forcings)
are maintained within certain bounds, and the critical points where bifurcations occur are
known. The behavior of logistic maps in a toroidal lattice with both local and global
diffusive couplings has been extensively studied by Kaneko. These studies investigated

23 However, the range of the asymmetric logistic map [-1 to +1] could be appropriate for modeling
a process afnodulation about a background average frequency. Some investigators of IT cortex
present evidence that modulations of the background rate in individual units (Richmond et al.) or
populations (Gochin et al.) predict the stimulus present. The zero value would be the background
rate.
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random initial conditions at each site. The pilot study leading to this dissertation
(DeMaris 1995) was possibly the first to explore the dynamics and resulting distributions
of a diffusively coupled logistic latticeith structured spatial data supplied as initial
conditions.

The specific steps used for image processing in the system developed here are as
follows. Note that the complete sequence of steps here is one iteration imbedded in one
stage of the larger computation.

DIFFUSIVE COUPLING STEP

S(xy)=@2-c)8xy)+
SIS0y +D +S06y =1 +S(x +1y) +S(x ~1y)
4

whered is the intermediate diffusion array, is the current time stepx, y are
the spatial indices of the pixel array S at the center of the diffusion neighborBoaxd,
the state variable at each site of the shape array; amdhe coupling constant restricted
to the range <0.0 to 1.0>.
The diffusion or averaging step is implemented as an 2-D filter with the
convolution kernel:
00 c¢/4 00

/4 0 cl4
HO c¢/4 0¢
where c is the coupling constant .
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Diffusion is followed by a squashing step, which insures that the state remains
bounded in the stable domain of the reaction step as described below:

§(xy) =@-09)S(x,y) +d,(x,y)
LOGISTIC MAP STEP
The second computational unit applied in each time step is the logistic map:

§+2(xy) =1-b(§ (X, Y))*

whereS t, x, andy are as stated above and whieiis:the bifurcation parameter,
restricted to the open interval (0.0,2.0).S is restricted to the open interval (-1.0, 1.0).

The dynamics of the logistic equation are such that given any initial state, after
some transient number of iterations the system will reach a steady state attractor which is
fixed (low b), periodic with increasing cycle length and transient length, or chaotic
(higher b values). As long as the initial input states S representing an image are bounded
as described above the system will be numerically stable. In the periodic regime, the
iterations required to converge to the attractor vary from 1 to 100 or more; longer
convergence times are observed in the vicinity of the critical (bifurcation) points. This
phenomena can be seen in diagrams in the next chapter illustrating the evolutions of
transients as the bifurcation parameter b is scaled.
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Fig. 17. A pictorial illustration of the CML architecture. The logistic
equation is executed in each node of the CML. Each node implements an
iterative or recurrent computation, illustrated by the loop on the node
illustrated. b) A regular spatial lattice of such nodes is connected to
nearest neighbors, with the NSEW edges labeled averaging a scaled
fraction of the state value of their neighbors at each iteration of the lattice.
The illustration is intended to show how a contour of black “zeros” in a
background of white “ones” is diffused by the averaging process, then
transformed by the map. The sequential application of both operations is
one iteration of the coupled map process.
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Fig. 18. A snapshot in time of an evolving coupled map lattice. An ellipse
form with values .0001 on a background field of .9999 given as an initial
state is evolved through the diffusively coupled CML process described
above; a cyclic color map highlights distinctions between the state values
in the interval [-1,1]. The thickness of the ellipse indicates the
propagation of the diffusion wavefront, while the local spatial structures
show the effects of coupling and map operators to produce characteristic
local statistics for a particular curvature region.

Synchronization in Coupled Map L attices

Several types of synchronization may occur in CML systems, given the different
phase regimes that the individual component maps and collective can operate in. If
individual units reach fixed points, the only possibility is totally synchronized, possibly in
different domains or clusters.

If individual units exhibit periodic oscillation, due to their local bifurcation
parameters or strong coupling, they may exhibit phase clustering, with P clusters
corresponding to the possible phase offsets in limit cycles of length P relative to time t
modulo P. If all units are in the same phase, they are defined as totally synchronized.

If individual units exhibit more complex (chaotic or itinerate) behavior, they may
be still be totally synchronized. Apart from such total synchronization, a variety of
synchronization types and clustering identification techniques are beginning to be noted
by investigators.

Partial synchronization is defined (Maistrenko, Popovych et al. 2000) in contrast
to total synchronization. For a set of units coupled in some graph, total synchronization
is defined as the case in which

‘S{ —31‘ - 0,t - oThe system of N units (N dimensional network) effectively
operates as a one dimensional map when synchronized.
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Partial synchronization, then is the situation where some units obey the
synchronization condition above while others do not. The network may be characterized
by clusters C1, C2, ...Cn < N, where N is the number of units. These may be spatially
segregated into contiguous oscillatifmmains.

For Maistrenko and colleagues, the emphasis is on clustering of units which
reach an asymptotic state sequence which falls short of full synchronization. In contrast,
another type of partial synchronization will be the focus of the rest of this thesis. Over
the time course of a dynamical evolution from an inhomogeneous initial state towards
synchronization, in either the full or partial sense of Maistrenko, we can consider the
distribution during the transient state as exhibiting partial synchronization.

If such partial synchronization is measured by sampling the dynamics (or simply
halting them, if such control is available), the differing rates of convergence of local
configurations to the asymptotic distribution can be used in information processing.

Clustering Phenomenain Globally Coupled Chaotic Maps

The dynamics of a coupled, spatially extended system of maps can no longer be
visualized as a bifurcation tree (the pitchfork diagram show above); instead, a phase
regime plane is used, where each point corresponds to a family of attractors of the same
type or mixtures of attractor types, and bounded regions correspond to phase regimes in
the entire network state space. In the more complex regimes described later, mixtures of
the simple attractor types (such as cycles and intermittency) may co-exist in physical
space, or move in the physical space of the network as traveling waves.

A schematic plot of the control space for a networklobally coupled logistic
map nodes, where each node is coupled to a mean field or average of all hodes at each
time step, is shown below. The axes of the plot correspond to local bifurcation
parameters, and coupling parameters between nodes. While the boundaries between the
network phase regimes are simple in this depiction, they can normally be very complex
and intermingled even for single map units, (e.g., the appearance of a period 3 window
surrounded by chaos can be seen in the bifurcation tree).

The structure of bifurcations is known as thmute to chaos of a chaotic
nonlinear system. The individual logistic map at each site, with no coupling, cycles
through aperiod doubling limit cycle cascade, reaching the chaotic regimes at a critical
valueb. The addition of spatial arrangemetnts and coupling to the low dimensional
dynamics picture complicates the description of dynamical structure. The intermediate
regimes for locally coupled maps are considered to have "frozen random" pattern
selection behavior in whictilomain boundaries form. Higher couplings produce larger
domains and ultimately a pattern formation behavior.

The globally coupled map has a toroidal collapse route to chaos. In this route,
the boundaries between the network phase regimes are monotonic with respect to the
control or parameter space. In globally coupled maps, domains are more unstable and
clustering is the dominant phenomenon.
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Fig. 19. The control plane and resultimipase regimes for a globally coupled

map lattice, after (Kaneko 1990). The line at 1.54 is the critical point (transition
to chaos) for an uncoupled map. The coherent or synchronized regime indicates
that all sites exhibit the same orbit. The numbers in the ordered and glassy
regimes refer to the number of dominant clusters, defined as those with basin
volume more than 10%. A cluster is a set of lattice sites oscillating in the same
attractor, though not necessarily with the same phase. Note that the even when
individual sites would be chaotic, strong coupling can enforce coherence and
complex behavior.

THE SocA DESYNCHRONIZATION-SYNCHRONIZATION CycCLE: A TIME-
VARYING CML

Having assembled the conceptual tools underlying the network at the heart of the
hybrid pattern recognition system, | now describe the small extension of the classical
coupled map lattice. This extension, motivated by the experimental observations of
changing slow wave potentials aodrrelations (Bresslet995), isshown in the next
chapter to increase recognition performance (both the recognition rate and average
recognition time) achieved in bounded iteration counts for a recurrent network. This key
extension is to use time-varying parameters, alternating between opposing epochs of
desychronization and synchronization.

Once again, the reader’s attention must be called on to note a subtle shift in th
meaning of synchronization, as it is used in a graph theoretical and statistical perspective
on dynamics; this will be explained in more detail in the following section. In this graph
theoretical perspective, desynchronization (broadening of the distributions) by loosely
coupled chaotic dynamics is followed by partial synchronization with more strongly
coupled chaotic dynamics.
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The two meanings of synchronization are closely related in a high dimensional
system. In my use of coupled maps for shape representation, the initial conditions are
confined to a small subspace of the phase space; this is synchronization in the new sense.
The chaotic dynamics, even in a strongly coupled system, will desynchronize in the sense
that for some transient period a range of time series will emerge through the
neighboorhood actions, whose correlations depend on the initial conditions but also
diverge in a pattern dependent fashion. When time series synchronization occurs — either
through temporary fluctuations in the transients, or through the gradual formation of
synchronized domain strutures — we will see the concentration of the system state in a
subspace again. This concentration may be apparent in instantaneous measurement of the
system state, or by examining time averaged occupancies of subspaces.

These operations take place in a homogeneous, orientation-sensitive array of
recurrent logistics maps. By homogeneous, | mean that the bifurcation and coupling
parameters are uniform across the entire array. By orientation-sensitive, | refer to the
spatial asymmetry in the coupling kernel (i.e. NSEW neighbors coupled, diagonal
neighbors uncoupled).
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Expressed in algorithmic form, the procedure is:

procedur e synchronizationOpponentNetwor k
image = threshol d(downSample(readlmage)))
for iterations= 1totl
diffuselmage = filter2D(couplingMatrix,image)
image = logisticMap(diffuselmage,bl,cl);
end // Desynchronize stage
for iterations= 1tot2
diffuselmage = filter2D(CouplingMatrix,image)
image = logisticMap(diffuselmage,b2,c2);
end // Partial Synchronize stage
end // procedure

Because of the variation in divergence and convergence times, a specific set of
bifurcation, coupling, and iteration time parameters {b1, c1, t1, b2, c2, t2} has a
characteristic response to any given image or family of images. Each image can be
considered as a set of overlapping initial configurations of size t1+t2; by the end of the
Soca process above, information about local configurations from a window of size t1+t2
is contained in each unit (pixel in the processing array). The set of initial configurations
comprising one image may be highly synchronizing for those parameters, while another
image may be less so less so.

The intuition behind the network operation is that images in some category are
considered agproductions of a stochastic language on an alphabedt whose symbols are
local pixel configurations. We seek parameters for the first (desynchronizing) stage
which, for this language, have the appropriate divergence rate matching parameter
determined characteristics of the second (synchronizing) stage. The second stage must
have characteristically avoided regions of state space and state transtitions such that
images in the category witbnverge near a characteristic sparse distribution.

Similar images should result in similar output distributions, and the inherent
characteristics of coupled chaotic systems — divergence of nearby states with time under
low coupling, but convergence to synchronized or partially synchronized states with high
coupling — offer a potential computational framework.

This computational framework can be viewed in terms of dynamical recognizers
reviewed earlier. Alternatively, it can be described as a generalization of a problem in
graph theory known as th@ad problem; it also has similarities to Markov chains and
probabilistic finite state automata. These descriptive frameworks are briefly described in
the next chapter on representation and learning.

This interaction between the specific initial configurations on a shape boundary
and the dynamics is an examplecobperative processing. Cooperative phenomena, and
particularly pattern formation processes, are distinguished by Palm (Palm 1982) by the
following criteria:
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The phenomena arises from the interaction of a large number of similar components.
The laws governing the interaction of the components are local.

The dynamical laws are the same for all components.

The local dynamics should not contain the “symmetries” of the global pattern
evolving through the local interactions. It is usually difficult to predict what pattern
will arise from the local interactions.

hroneE

The essence of the activity flow in the present network is cooperative processing
mediated by thepposed processes of desynchronization and synchronization, hence it is
designated asynchronization opponent cooper ative activity, or Soca networ k24,

The table below indicates the particular network parameters investigated here,
selected from an expandedtwork parameter space of possible single layer CML
systems.

Table 3.  Network Design Choices for the Soca System

Input Coupling Bifurcation Readout
Structure All cells Local Logistic partition cell
Diffusive occupancy of
all states in
diffusion
wavefront,
Spatial Homogeneous Homogenegqus Homogen¢ous All states
Temporal Initial Variable Variable Instantaneous
condition (one| “opponent” (opponent
shot) stages stages)

The entries in the table above represent parameters of network design using CML
derived systems. The set of choices shown fixesl constraints, within which an
evolutionary search proceeds to discover solutions to an object recognition problem. A
more ambitious evolutionary search could choose to optimize networks choosing
different alternatives for some or all of those parameters.

MACROSTATE VARIABLES AND MEDIUM SCALE NETWORK MODELS

Before proceeding to experimental methods and data, | now return to the general
topic of modeling biological networks with oscillators and synchronization phenomena.
The following sections serve two goals. The first is to highlight the history and
justification of such mathematical systems as neural models. Second, | mean to survey

24 The name is inspired in part by the admonition of Walter Freeman that neuroscientists need to
learn to dance.
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closely related work in networks oriented toward some specific perceptual modeling or
pattern recognition function.

As noted earlier, connectionist models have typically assumed rate coding and
monotonic activation functions, which correspond closely to the common assumptions of
transfer functions for single neurons, and to assumptions about multiplicative weighting
as the essential operator controlling network information flow. Some investigators are
more cautious, noting that units in connectionist networks may correspond to larger
structures. For example, questions raised regarding the reliability of single neurons for
rate coding suggest that a sigmoidal activation function unit might be better interpreted as
the average behavior of many parallel detectors converging on a family of readout
neurons (Softky and Koch 1994).

An alternative to modeling single neurons or putative “parallel averaged
networks” is to more directly model large scale dynamics, consisting of thousands of
neurons. This has historically been the domaimstatistical mechanical (Amari 1974)
and oscillatory models. One of the first such oscillatory models still in relatively wide
use?> was developed by Wilson and Cowan (Wilson and Cowan 1972); (Cowan 1974).
Continuous variables represent activity levels of excitatory and inhibitory sub-
populations, rather than activity of single neurons.

There is one crucial difference between the Wilson-Cowan (WC) model and the
use of maps to model oscillatory brain dynamics; while both maps and the WC model can
generate chaotic time series and be coupled in spatial aggregates, the WC model also has
“resting”, non-excited states. Since a map with chaotic control parameters is chaotic for
any input, there is no equivalent rest state. It would be possible to introduce additional
nonstationarities in the model, with a baseline fixed point attractors (and corresponding
bifurcation parameter) designated as a rest state. Input shifts the bifurcation parameter
to leave the fixed point state, perhaps with some decay to the resting state. In the
modeling here, | address this by simply ignoring “background” states beyond a diffusion
wavefront region of interest in the evolving pattern by omitting the highest bin count
when gathering the statistics. Given the current algorithmic “back end” recognition
process, the use of histogram functions intended for image processing would require
similar suppression of the rest state values even if a more complex input coupling and
evolution dynamic were used, without really contributing to the essence of the project.

When modeling physical or psychological phenomena with spatially extended
(field) dynamics, it is common for each variable in a field (i.e. each unit in a coupled
map lattice) to represent a quantity associated with an aggregate of microscopic units.
This kind of representation, originating in statistical mechanics or fluid dynamics, is
known as a macrostate variable. Temperature or instantaneous velocity of a fluid, for
example, are macrostate variables in the study of fluids. In neural modeling, the
macrostate variables are quantities like ensemble activation (average spike train
frequency of all units), temporal phase distribution, or ensemble average frequency (pulse
train density or spikes / unit time measured over the whole ensemble). Parameters in

25 Cowan cites earlier work by Buerle (1957) and Griffith (1963) as historically important in this
research stream; | have not encountered recent work citing them.
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equations may also be considered as macrostate parameters, indirectly capturing
guantitative effects of distributed aggregates like neurotransmitter fluxes, and excitatory-
inhibitory ratios of neural sub-populations, or distributions of delay times which induce
bifurcations in large networks.

Earlier the distinction was made between state variables and control parameters,
with the latter consisting of bifurcation and coupling parameters. In large scale models,
control parameters - especially bifurcation variables — generally will not have a direct
map to single parameters in the underlying micro-circuit model. In fact, bifurcation
variables can be interpreted as subsuming the effects of widely separated neural tissue,
such as cortical regions and sub-cortical nuclei, or long range connections between
cortical regions.

As noted earlier, the trend in interpretation of EEG signals and evoked potential
responses is as a signature of large scale coordination and control processes between the
regions that brain imaging indicates cooperatively produce computations. The sudden
step function change in network parameters above should be interpreted as an example of
such large scale control, where staged or periodic volleys from cooperating cortical or
subcortical regions effect this rapid change in bifurcation and coupling parameters.

The systems described here should be regarded as spatiotemporal cooperative
systems acting on vectors pulse density space, with the step-function changes in
bifurcation and coupling parameters representing slower control dynamics implemented
by modulation from separate sub-populations. The control dynamics of bifurcation and
coupling at the population level supplement the traditional neuron level control dynamics
of gating, inhibition, and feature selection. These population level control dynamics may
be more easily correlated with MEG and EEG observables than the traditional control
dynamics acting at more local scales. In turn, they may produce neuron level observables
such as modulations in correlations of heurons engaged in a processing task. | will return
to this subject in the final discussion section.

The next section addresses the question of how the use of chaotic maps is
justified in terms of standard neuron models, without addressing questions of learning.

SYNCHRONIZATION PHENOMENA AT MULTIPLE SCALES

If a map is to be regarded as representing the aggregate behavior of a large
system of neurons, it becomes clear that we must explain oscillatory and synchronization
phenomena operating at multiple scales of the brain, from micro-circuits of a few neurons
to large networks. This task has been addressed by several investigators. In one such
study, Wennekers and Pasemann investigate coupled pools of sigmoidal activation
neurons with random diffusive coupling and a probability distribution of coupling
strengths. They found that for appropriate parameters the temporal behavior of the whole
system can be described bysigle, low-dimensional equatioWennekers and
Pasemann 1996). This woven true asymptotically for long times and system sizes
approaching infinity. Even for fairly small networks (N=50 for two interconnected
pools) with 50% standard deviation in coupling strengths, a similar bifurcation structure
between the low dimensional system and the full network (average activation of all
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micro-circuit neurons) is seen. The network bifurcation structure has a period doubling

cascade leading to chaos, similar to the logistic map used here, but with the possibility of
multiple coexisting attractors for any given coupling between pools. Their work situates

itself as an extension of seminal work by Anninos, Harth and colleagues (Anninos, Beek
et al. 1970); (Harth, Csermely et al. 1970), and Palm (Palm 1982), which demonstrated
that threshold modulation in random networks leads to mean activity input-output curves

described by a single humped function.
In a series of studies, these earlier workers performed discrete time simulations

of random networks of threshold neurons of mixed excitatory and inhibitory types.
Parametric curves (reproduced below) of activity lewelesulted from studies of the
networks which varied the parameters shown on the following page along with a typical
activity transfer function.

93



Network parameters affecting activity curve

h percentage of inhibitory cells

u*average number of synapses of an excitatory cell

| average number of synapses of an inhibitory cell

n threshold of all neurons (number of excitatory synapses to fire)
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Fig. 20. Activity at time step t+1 vs. t. Note that the form of these curves,
are single humped maps — the same input output structure governing the
logistic map. This illustrates one scenario to produce the input-output
form, characteristic time series and bifurcation structures by micro-circuit
models. Changing excitatory-inhibitory ratios and the firing threshold act
as the bifurcation parameters of this model. From Anninos, P. A., B.
Beek, et al. (1970). “Dynamics of Neural Structures.” Journal of
Theoretical Biology 26: 121-148. Reproduced with permission of
Academic Press.
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BioLoGIcALLY PLAUSIBLE COUPLING VALUES

A question that should be raised when thinking about CML systems as models of
medium or large scale neural dynamics is what, if any restrictions on the range of
coupling parameters should be considered as biologically realistic?

One position would be to consider anatomical data on the proportion of lateral
connections to recurrent connections in mini-columns as a bound, resulting in a smaller
upper bound (perhaps .03) than is typically found by evolutionary learning in my
experimental work. | would argue that such a restriction is unjustified, because the
underlying micro-circuit dynamics which regulate synchronization may not require large
numbers of independent connections, instead relying on more subtle mechanisms. For
example, spike doublet firing mechanisms have been implicated in long range
synchronization (Traub/hittington et al. 1997). Thus the coupling strength should be
understood in terms of ratios along the continuum achievable by any such synchronizing
mechanisms. hese will of course depend on a non-zero anatomical connection density,
but need not bear any linear relationship with the lateral connection density.

REVIEW OF ANALYTIC RESULTS ON SYNCHRONIZATION AND ENSEMBLE
DENSITIES OF MAPS

The previous sections have covered the basic definitions needed as a basis for
understanding the dynamical network function for representation forming representations
and for pattern recognition. | will now briefly describe recent theoretical developments
which hold promise for future work on more direct computations of required parameters,
or for establishing bounds on the applicability of the techniqu€he algebraic treatment
of graphs, known as spectral methods, has been extensively developed since origninating
in 1972 (Donath and Hoffman 1972) for graph partitioning, with application to
integrated circuit design. Building on these techniques, Wu has established several
theorems on the lower bounds of coupling required for full synchronization on various
topologies of coupled map lattices (Wu 1998).

These results apply when the bifurcation and coupling parameters are
homogeneous or uniform. Three cases are treated.

For globally coupled logistic maps, coupling to the mean field exceeding a

threshold[L - ¢| <% guarantees synchronization.
For coupled maps in which each of N units is symmetrically coupled to k
. : 1 :
neighbors with coupllnqz, the system almost always synchronizes for large k.

For coupled maps with uniform symmetric coupling on a connected graph of n
nodes, a region in the (b, c) parameter space results in full synchronization. The region is
bounded by the constraints

oonl< oo o sl

of the graph (smallest nonzero eigenvalue of the graph Laplacian ma&fixis the

HwhereO( is the algebraic connectivity
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Jacobian matrix of the map functibrmaximum divergence over nearby points in the
map domain, and m = min(n, 2deg for the graph.

Another result due to Wu is that for uniform discrete time maps with
homogeneousdditive coupling (Wu 1999). For the case in which the connection
topology matrix has zero row sums, the dynamics of the coupled system after
synchronization is proven equivalent to some parameterization afnttwipled map.

This result may have implications for efficient encodings which are generated from a
high dimensional system, suggesting that an encoding or matching process could generate
the effective dynamics with a one dimensional system. The proof does not hold however,
for diffusively coupled maps used in this thesis.

Synchronization per se is not a goal for the following description of a pattern
recognition system; on the contrary, in order to form a representation space, complete
synchronization must be avoided or the representation space becomes effectively one
dimensional, with little separation among object representations likely to occur even if
sampled prior to complete synchronization. One possibly use for these theorems would
be to set constraints for any learning or search process, since coupling values guaranteed
to synchronize may be unsuitable for the purposes of forming representations, if it occurs
rapidly.

THE TIME COURSE OF EVOLVING DISTRIBUTIONS IN ENSEMBLES

As noted, most work in dynamical systems focuses on the long time equilibrium
behavior of systems, in contrast to their transient behavior. One recent exception is work
on the evolution of densities (distributions) in ensembles of identical maps (Driebe 1999).

Driebe’s work takes the statistical mechanical viewpoint, studying the
distribution of states for an ensemble of identical maps over a distribution of initial
conditions. While the density concepts and the methods developed are also applicable to
equilibrium states, the work is notable in its emphasis on distributions during the transient
evolution toward the limiting equilibrium distribution.

Densities may be measured instantaneously over an ensemble, or over time.
Given the latter emphasis, complex motion (orbits) in low-dimensional chaotic systems is
naturally described by densities. Density means the occupancy of a region of phase
space, i.e. the fraction of the ensemble in a particular subset of the domain of the
function. Initial nonequilibrium density represents an ensemble of uncoupled maps with
different initial conditions (or perhaps just uncertainty about the initial conditions).

Behavior of orbits in a map and densities in an ensemble of maps may be
strikingly different. A typical orbit in a chaotic system looks qualitatively similar
forward and backward in time, even if the dynamics is non-invertible. In contrast
evolution of density is usually obviously time oriented. Thus density evolution is not
reducible to trajectories.

For non-invertible systems with chaotic trajectories, evolution of densities will
show regular behavior; for systems with regular (i.e. periodic) trajectories, the density
will mirror the orbit level. For chaotic maps, nearby trajectories diverge, while initially
different densities, over an ensemble of identical maps converge. Instantaneous densities
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of low dimensional systems may rapidly (e.g. only a few iterations) approach the
equilibrium density.

The evolution of densities is described by the Frobenius-Perron operator. The
spectral decomposition of this operator can be used to compute decay rates of correlation
modes (peaks in the Fourier transform corresponding to poles in the complex frequency
plane). Thespectrum of an operator is the set (discrete or continuous) of eigenvalues of
the operator under consideration acting in a specified functional space, and is different for
different functional spaces. For uncoupled maps the distribution of a random ensemble
can be computed exactly at each time step.

For the purposes of the discussion here, the main message apithevolution
of distributions toward an equilibrium value for chaotic dynamics; however, it is not
entirely clear if this rapid evolution applies tmupled map systems with highly
structured distributions. The relatively small number of lattice sites, strong peaks in the
initial distribution, and the constant perturbation from equilibrium states due to coupling
clearly result in stronger peaks in the transient distribution. If the density approach can
be extended to coupled maps (perhaps building on Wu's approach to produce an
equivalent single map ) it may be possible to more directly construct a classifier for a
particular initial distribution characterizing some family of patterns to be recognized. For
now, adaptive learning methods, such as | use in this thesis, seem to be the only practical
approach.

SPATIALLY EXTENDED DYNAMICS, TRANSIENTS, AND SYNCHRONIZATION:
NOTESON THE LITERATURE

In this section | will survey additional literature exploring nonlinear oscillation
dynamics in vision, pattern recognition and other engineering tasks, but which is
somewhat tangential to the main thread of shape representation and similarity.

Conceptual Tieswith Cellular Automata Literature

The fields of cellular automata (CA) and random boolean networks were the
better established “parent” disciplines which spawwedk on couplednaps(Wolfram
1986). Both share discrete time and space iteration, with most work employing
synchronous update at all cells. CA and coupled maps systems differ only in that CA
typically have boolean or small integer state variables, with boolean transition functions.
Coupled maps use on or more real-valued numbers as state values, and use algebraic or
piecewise-linear functions as update rul€sansients in cellular automata have been
studied more extensively than in continuous dynamical systems or coupled maps;
methods for creating appropriate structure of the attractor basins (i.e. the transients
leading to an attractor) have been derived by Wuensche, but these computations have no
obvious mapping to biological dynamics (Wuensche 1996).

The concept ofime-varying spatially extended dynamics was proposed by
Wolfram in the context of cellular automata (Wolfram 1986). A slow lattice controls the
rules governing the update of sites on a fast lattice. Wolfram informally describes several

97



strategies for pattern classification with such systems, covering some of the same ground
described earlier by Rosenfeld (Rosenfeld 1979).

Pattern formation phenomena are the major object of study in CA, but are
typically not considered as synchronization; however, results (reviewed in an earlier
section) on problem solving strategies involving regular domains (Hordijk, Crutchfield et
al. 1998), (Mitchell, Crutchfield et al. 1996) may be possible to recast in terms of
synchronization. The essential difference is tmablocks (words or spatial
configurations) in CA play the role thdiscrete phase space intervals in a single cell
play in coupled map lattices. Measures on block statistics and correlations replace
measures on occupancy of phase space regions. Cooperative pattern formation processes
are the essential characteristic in both systems.

Pattern Processing in Coupled M aps

Work on the processing of spatial patterns by arrays of chaotic units has been
performed by Farhat and del Moral Hernandez (Farhat and del Moral Hernandez 1996).
The standard symmetrical logistic map formulation is used for units, with the state
variable interpreted as phase in the intervaltp,2T'hey interpret the map as a model of
spike processing in a single neuron, in contrast to a large scale network as in most other
work reviewed in this section. One notable aspect of this work is that the coupling
function between cells is itself nonlinear; two variants of coupling are proposed. One is
an exponential function of input, the other a series quantization thresholds against this
exponential function. Quantization (binning) results in a loss of smoothness in the
characteristic pitchfork bifurcation diagram of the coupled maps, producing instead
constant values until bifurcation points. The quantization is interpreted as different
neurotransmitter release characteristics, associated with different presynaptic activation
levels.

In their demonstration of pattern processing, piecewise linear activation values
are applied as bifurcation parameters to an input logistic ring, which is coupled to a
second processing layer via the nonlinear scheme above. Coupling between elements is
homogenous. It is shown that after long transients (1700 cycles in one example) for some
input patterns the dynamics may collapse to clusters of periodic attractors. The number
of clusters is much smaller than the array, i.e. 6-7 clusters in an ring of 100 chaotic units.
It is suggested that this convergence to clusters of periodic attractors for “coherent input”
may be interpreted as recognition and classification of the input, while inputs which are
not recognized remain incoherent.

As noted in my review, research in IT cortex, the putative site of object level
feature recognition, has not turned up obvious periodic oscillatory dynamics fitting this
hypothesis at the single neuron level, but neurons could be participating in larger scale
aperiodic oscillatory dynamics. However, the large number of iterations required seems
inconsistent with rapid processing. The correspondence of an iteration cycle with
particular micro-circuit parameters is not developed in the paper, but even if it
corresponds to recurrent processes in dendritic spike processing 1700 iterations seems a
heavy burden to justify biologically.
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A fully connected network of quadratic maps with period doubling route to
chaos has been studied by Carvalho and coworkers (Carvalho, R. et al. 1999). A baseline
bifurcation state at the critical transition to chaos is chosen, with a correlation learning
rule based on the response to input. They note that uncoupled dynamics at this transition,
while not chaotic in the + Lyapunov sense, consists of an infinite number of unstable
periodic orbits; when coupling is induced between units, some of these are stabilized,
resulting in a characteristic distribution over a set of high period orbits for the learned
input pattern. This stabililization is observed for a fixed initial condition prior to
presentation of patterns and is measured after*2ikté steps.

Robert Gregson has, over the course of many years, explored nonlinear models
of psychophysical phenomenon and collected the results in two monodfaEtson
1988; Gregson 1995). Some of this work has utilized spatially extendadidomodels,
designated as (nxi) models. These are notable in the present context because many of
the studies also deal with low numbers of iterations, thus are essentially exploring the
computational correspondence of transient phenomena with psychophysical events.
Also, Gregson introduces the notion azfscades, a set of n recursions in a lattice; the
output of this system is fed back to the input for an “outer loop” of some number of
iterations. In this model, the initial “stimulus” variables are not the state variables but
rather gain values affecting the evolution of an autonomous complex variable; in the
outer loop, the output of one such cascade is used to control the gain in a subsequent
cascade. Gain in thelhsystem serves as a bifurcation parameter, so the system as a
whole is non-stationary and effectivefuto-bifurcating in my own terminology
introduced in a previous thesis (DeMaris 1995). That specific kinds of computations are
effected by bifurcation changes a slow scale relative to evolution equations is a major
commonality with the present modéf. Gregson has modeled spatial vision
phenomenon such as the Muller-Lyer illusion, using total iteration counts under 100. He
makes many points which | arrived at independently; that nonlinear evolution equations
are a “total system analogue”, rather than corresponding to any local (retinal or cortical)
neural sheet. Also, in contrast to earlier field theories (Ratliff 1965), there is no reliance
on opposed excitatory and inhibitory influences. Like the network dynamics explored
here, Gregson notes that coupling connections between these nonlinear field units have
no obvious interpretation as excitatory or inhibitory.

The phenomena of ambiguous perceptions has been of great interest since the
earliest days of visual psychology. The spontaneous switching of the images such as the
Necker cube is clearly a dynamical phenomena, and the apparent instabilities might be
expected to shed light on perceptual processes. The literature on Necker cube
psychophysics details interactions between eye movements and switching events, as well
as interactions between scale, orientation, and the distribution of switching times. In an

26 Because of this emphasis on transients, Gregson’s approach must be acknowledged as a key
precursor of my work, though the original impulses for my investigations came from other work
outlined here; due to terminology differences | only realized the similarity of CML with his
“cascades and fields” approach after personal communication with T. Henmi, comparing our
respective work on Muller-Lyer illusions and attempting to combine aspects of both.
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earlier study motivated by these complexities, | modeled the cooperative formation of
monocular depth fields and attentional foci using a multi-layer CML model, mixing two
locally coupled lattices with a globally coupled lattice. Scale changes in the cube led to
changes Scale changes in the cube led to changes in the distribution shape conforming to
psychophysical trends. A low dimensional dynamical model by Kelso et al. previously
linked interactions between reversal rates and distribution shapes, but did not provide
details of interactions between spatial forms and coupling, or account for attentional
correlates (Kelso, Case et al. 1995).

Input layer

Primal sketch figure is injected to a
CML 1 Z 1 // local diffusively coupled CML. The
state values at this site drive 2 other

B layers.
Attention layer

l Form mediated fluctuations between

CML 2 /M / chaotic and periodic oscillations generate
— spatially localized attention events and

s control organization of depth field layer

by coupling to depth layer.

Gestalt (depth field) layer

GCM 3 S Coupling modified during attention
events, influencing spatial distribution
of clusters.

Fig. 21. Schematic of a network modeling formation of monocular depth
fields with multiple CML layers. The labeling on the states indicate the
nature of couplings between layers; i.e. state fluctations in layer 1
influence bifurcation parameter in layer 2. From DeMaris, D. (1998).
Pattern formation in spatially extended nonlinear systems: toward a
foundation for meaning in symbolic forms. !st. Intl. Conf. on Anticipatory
Systems, Liege, American Institute of Physics. Reproduced with
permission of Lawrence Erlbaum Associates.

Segmentation and Synchronization in Coupled Oscillator and Coupled Map
Systems

Coupled oscillator and coupled map systems have by now been investigated as
models of several perceptual tasks and phenomena. Segmentation, the task of identifying
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object boundaries and separating a scene into object tagged regions, has received the
most attention. A few of these studies are relevant because of their intrinsic interest in
the context of computing with synchronization processes, and also in that practical work
in computerized scene analysis demands that several tasks be solved nearly
simultaneously, such as the discrimination of object boundaries and the recognition of the
objects demarcated. Successful segregation of objects is assumed in the computational
work here, but in future engineering systems or more complete biological models these
tasks may be combined; happily it appears that the synchronization framework, and
chaotic synchronization in particular can support both tasks.

Peréz applied self-organizing responses at the local cell level in an
inhomogeneous coupled map lattice model, using the evolution statistics of a "spin" order
parameter as a discriminator of irregular structures in a regular background in a
semiconductor defect recognition task (Perez 1988). By self organizing, | mean that the
bifurcation parameter at each time step is a function of the state of each cell; this is
further regulated by a local spin-correlation measure, which is essentially a measure of
synchrony. Spin is defined as a difference measure from one time step to the next;
positive increments are spin up, negative spin down. Thus neighboring cells with similar
time series derivatives are stabilized, leading to segmented spatial activity domains
corresponding to manufactured shapes regions and defects.

Price et al. (Price, Wambacq et al. 1993) used a coupled map lattice forced by
damped sinusoidal modulation of a sample image for texture segregation, with results
comparable to other approaches. Particular strengths claimed for the technique are
relative insensitivity to the dynamic range and contrast of the original signal, avoiding the
tuning usually associated with adaptive filter approaches, and the ability to effectively
overcome the classic paradox of region segmentation in noise: how to smooth noise
without blurring essential features. More recently, two groups have presented work on
segmentation with continuous formulations coupled oscillator models. A system based
on simplified Wilson-Cowan Oscillators with local spatial coupling has been developed
by Campbell and Wang, with a particular emphasis on fast-synchronization,
demonstrating that a network of several hundred oscillators in a one dimensional chain
can be entrained in a single cycle (Campbell and Wang 1996). Coupling is dynamic, so
that once groups are synchronized the coupling disappears. A special long range
connection “global separator” unit acts on all local units to desynchronize oscillations by
adjusting their parameters; this effect can be overcome by sufficiently strong local
diffusive coupling, giving rise a sequence of activations of objects in connected regions.
The state variables of the system are activity levels, with different objects represented by
phase separation in time, with some clusters active while others are silent. Up to nine
objects could be represented and separated by the system.

Another group has focused on overcoming what they term the “Synchrony -
Desynchrony” dilemma, resulting from conflicting requirements for synchrony of
oscillators coding the same object and desynchronization between clusters coding for
different groups (Zhao, Macau et al. 2000)Like Campbell and Wang, they used
Wilson-Cowan oscillators, but with Laplacian"{2derivative) coupling between
oscillators, and with the parameters of the system suchcliaatic oscillations result.
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They claim that this allows effectively unlimited segmentation. It does so, however, by
increasing the complexity of read-out of the encoded segmentation. Their procedure for
identifying objects in the oscillating field involves observing which sets of oscillators
visit a particular phase space region (Poincaré section) simultaneously. Since the chaotic
trajectories of different clusters may coincidentally cross the section simultaneously, a
decision on the assignment of groups is not made until 3-4 such simultaneous visits are
made within a particular time interval. By that time, sensitive dependence is presumed to
have separated the trajectories sufficiently.

Finally, 1 highlight another study using the coupled map lattice formalism to
perform segmentation which goes further than most in seeking psychological plausibility
by fitting psychophysical data on ambiguous perceptions (van Leeuwen, Styvers et al.
1997). Aspart of that project, a numerical study of;C the critical coupling value
leading to synchronization between two maps over a range of random initial conditions,
against the bifurcation parameter was performed. The relation is not strictly monotonic,
but does generally show increasing;@or increasing b parameter. .{Values in the
range .16 to .25 appear in the chaotic bifurcation regime.

In the network of van Leeuwen et al., the presence of a signal in the input field
reduces the bifurcation parameter of the map to the minimum of the specified range. The
background state of the network is uncorrelated, chaotic oscillatory activity.

Coupling is adaptive to a smoothed difference measure between coupled nodes
in this model, with weights scaled by a sigmoidal function of the difference function up
to a maximum coupling. Therefore, spatiotemporal patterns of synchrony are achieved,
with varying stability depending on the parameterization. With the addition of on axis
directional preference to weight adjustments, switching between alternative Gestalt
organizations is in evidence, with the distribution of switching times qualitatively
matching psychological data. It is noted that this distribution is obtained with only one
free parameter. A numerical study determined the critical coupling values leading to
convergence over a range of random initial conditions vs. the bifurcation parameter. The
relation is not strictly monotonic, but does generally show increasipdo€increasing b
parameter. Values in the range .16 to .25 appear in the fully chaotic regime.

SUMMARY

The evolution of states in arrays of coupled discrete oscillators is a rich source of
phenomena, ranging from attractors of various types, synchronization and clustering,
complex transient structures, and spatial pattern formation. For the diffusive coupling and
low iteration counts used in the present work, a few simple trends are evident. Increasing
the coupling across a lattice decreases the effective dimension and nonlinearity; units
which would be chaotic if uncoupled will become synchronized chaotic (for high b
parameter) or even periodic with high coupling. The dynamics of response to structured
inputs, used as either initial conditions or to modulate bifurcation or coupling parameters,
is relatively unexplored.

Chaotic dynamics can be produced in small circuit neural models and larger
ensembles through a variety of underlying pathways. Given the aperiodic, stimulus
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linked rate modulations and changes in correlation seen in biological networks, to study
the dynamics of coupled chaotic systems seems a natural direction for neural modeling.

A researcher familiar only with the well known principleslofv dimensional
chaos — the resemblance of chaos to noise, the sensitivity to initial conditions - might
dismiss the relevance of coupled recurrent chaotic systems as a model of neural
processing. The added complexity of spatial interactions and coupling, however, can
push a CML system either towards linearity (i.e. regarding the temporal or instantaneous
statistical response to input), or may provide the substrate for very complex
computations, such that correlations between input patterns and measures of the system
response become useful tools for neural system design.

To date, very little research has gone beyond pure dynamics studies to perceptual
modeling or pattern recognition with chaotic or periodic oscillatory systems.
Segmentation is the most well studied area, and | have reviewed several recent
contributions from other investigators.

In the next chapter | investigate the ability of oscillatory systems to rapidly form
responses to spatial forms. | begin with the parametric study of transients in coupled
logistic maps to spatial forms, and ultimately demonstrate a system for recognizing 3
dimensional objects from their 2 dimensional silhouettes. The demonstration shows that
if the assumptions of place coding are abandoned, coupled map systems can serve as the
physical substrate for algorithmic approaches ranging from the classical (e.g. metric
spaces) to more modern (e.g. view based normalization).
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