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Chapter 2: Similarity and Object Recognition

This section critically surveys historical and recent work related to the topic, with
the aim of situating the present theory in various ongoing dialogs related to effective
pattern recognition and the nature of biological perception. Given the heavy interactions
between these disciplines, the assignments are perhaps somewhat arbitrary, but are
simply intended to reflect the organization of the literature.  Similarly, occasional
references to other disciplines or technical topics covered in depth in later sections seem
to be inevitable; it is hoped that the reader will exercise patience, and expect that such
material will be approached again in a later section.

PERSPECTIVES FROM PSYCHOLOGY

The wealth of data from functional brain imaging has presented challenges to
cognitive psychology and artificial intelligence, which for their first decade or so could
presume that there might be universally effective algorithms in a given domain of
perception or cognition.  Given the distributed nature of processing revealed by imaging,
a rough consensus exists across psychology and neuroscience that, for any given domain
of cognitive and neural processing, diverse mechanisms come into play depending on the
exact nature of the task faced by the organism.  Cognitive processing is attributable to
moment to moment shifting between large-scale brain states that interact with and control
diverse linkages of distributed and local processing networks, not simply a sequential
flow of information through static modules.  Thus there is no universal processing flow
for perception which is independent of the time course of the information presented, nor
from the task context in which a perceptual act is embedded.  This is stated only to
reinforce the appreciation that such changes in the nature of the task may induce a
different cognitive or neural network architecture, subtle changes to the task may change
the picture considerably.

 To be concrete, much of the literature on visual recognition discussed below is
focused on rather contrived conditions of matching objects presented briefly in sequence.
This task differs from a natural ecological embedding condition, involving access of short
or long-term memory representations of objects with some meaning to the organism, and
searching for them in a natural scene.  Thus observations at the levels of psychophysics
and neural activity may give only limited insight into other modes of object recognition.
For match-no match tasks on rapidly presented objects, preattentive neural dynamics,
which can rapidly make discriminations with minimal involvement from more complex
representations, are likely to dominate.  The psychological meaning of similarity in such
a task setting and in the context of object recognition, will differ from other classic work,
such as Gestalt era studies of similarity (Goldmeier 1972).  In the latter, subjects make
choices at their leisure between various drawings; their judgements shed light on
perceptual issues of the interaction and dominance of aspects of form such as orientation,
size, and spacing on grouping processes.  Whether the same processes come into play in
very rapid recognition process is an open question, but most of the computational
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procedures to be examined here do not focus on issues of grouping, or other areas of
figural processing which includes phenomena such as length distortions, illusory contours
and size distortion illusions.

Similarity and Metric Spaces
Similarity plays a fundamental role in theories of knowledge and behavior. It

serves as an organizing principle by which individuals classify objects, form concepts,
and make generalizations. Indeed, the concept of similarity is ubiquitous in psychological
theory.  It underlies the accounts of stimulus and response generalization in learning, it is
employed to explain errors in memory and pattern recognition, and it is central to the
analysis of connotative meaning

Similarity has a long history in mathematical psychology, with two major
branches: set-theoretic and geometric.  The emphasis in the present work is on geometric
similarity.  In this formulation, objects are identified with points in a space, with
categories corresponding to volumes in the space.  The dimensions of the space are
identified with primitive features in the input space.  Similarity is conceived of as
proximity, and a space which supports a distance function or metric is a metric space.

Three properties serve to define a distance function as a metric:
1. The identity property asserts that an object should be most similar to itself.
2. The symmetry property asserts that the order of presentation should not affect

the measure.
3. Finally, triangle inequality should be satisfied; two dissimilar shapes should

not both be similar to a third.
While these properties must be satisfied to conform to the mathematical

definition of a metric, it is less clear that they are relevant to human perceptual processes.
Symmetry, in particular, does not hold; but examples where it fails are most readily
drawn from the realm of semantic or conceptual constructs (Tversky 1977).  To better
model semantic information and the symmetry violations, Tversky proposed a set-
theoretic framework which counts shared features and independent features to produce a
quantitative similarity measure, but dispenses with the notion that the set properties need
to be ”dimensionalized” .

Proponents of prototype based categorization for shapes have argued that this
asymmetry is due to the fact that prominent features of a shape in memory establish it as
a prototype, and the absence of this feature can quickly be detected.  Edelman (Edelman
1999) argues further that the critique of metric similarity at verbal and conceptual levels
is of limited relevance in the assessment of geometric objects, where the objects can be
decomposed into objective primitives.  The same assessment was made by Tversky and
Hutchinson (Tversky and Hutchinson 1986), stressing that this is particularly true when
physical stimuli involve a small number of dimensions.  When a larger number of feature
dimensions is involved, metric models become problematic and the set-theoretic
alternative performs better.  Uttal, in a review of similarity and categorization, stresses
that the boundary between perceptual and semantic representations may hinge on the
number of dimensions (Uttal 1988).
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The metric space concept was enhanced by the addition of a local density factor
by Krumansl (Krumhansl 1978), in a way that compensates for some of the weakness
noted by Tversky.  In this formulation, the distance between objects is modified by the
number of nearby neighbors in the space so as to increase distances in densely populated
areas.

Measuring Similarity Experimentally
How can perceptual similarity be measured in a psychophysical setting?   A

variety of methods have been developed.
When subjects are asked to perform tasks, three major methods of experimentally

assessing the perceived similarity or similarity of representation are seen in the literature.
Reaction time (also called judgement time) are measured, but in some cases short reaction
times are interpreted as a sign of similar internal representation (Bower and Clapper
1989), while others interpret long reaction time as confusability (Mumford 1989).  Error
rates, particularly false positives or confusions, are often interpreted as indicators of
stimuli sharing similar representations.  A final method is to measure interference, which
is essentially reaction times or error rate effects of attending to, ignoring, or holding in
working working memory  multiple stimuli.

Levels  Of Categorization and Object Recognition
Similarity, in the broad context of category formation and object recognition, is

normally framed in a discussion of the properties or features constituting a category.
Seen broadly, several problems must be solved for effective and flexible object
recognition7  (Tarr 2000).  One is the multilevel nature of categories.  Very broad
distinctions suitable for concise representation, naming  and rapid recognition define the
basic level of categories (Rosch 1975).  Subordinate level categories are more fine
grained and require more time for naming.  The categories ‘birds’ and ‘humans’ are entry
level, while ‘blackbirds’ and ‘song sparrows’ are subordinate categories of bird.  A
further level of categorization is the individual or exemplar level, where an individual
sparrow or human could be identified.

The term entry level refers to the level that is accessed first and typically named
when a subject encounters a familiar object.  This is normally the basic level, but for
some categories (notably faces) the subordinate or individual level is the entry level; for
anomalous objects in a basic category, such as penguin among birds, the subordinate
level may be named.

Another related issue in recognition is the variability in viewing conditions for
objects.  Objects may be obscured by other objects (occlusion), or parts of an object may

                                                  
7  The categorization section  follows Tarr’s review closely; the review provides a concise
statement of issues and recent work including some relevant imaging and single neuron studies,
but focuses on the structural vs. view based controversy to the exclusion of other important issues
such as visual search, and overlooks additional single and multi-neuron studies which will be
addressed in a subsequent section here.



15

shield other parts from view (self-occlusion).  For non-rigid objects, recognition must
account for variation in the configuration of parts.  Viewpoint changes affect the retinal
image of an object; changes in size, position in the plane, and rotation in depth.

Categorization level interacts with object recognition, implying the likely
prospect of multiple subsystems.  There is evidence that the ability to compensate for
viewpoint changes depends on the categorization level (Edelman 1995).  Subordinate
level discriminations – those between very similar objects – increase the costs of
recognizing unfamiliar views.

Another form of interaction is that certain stimulus classes, notably faces, seem
to be interpreted chiefly at the subordinate level.  There is a long history of claims of
specific face detector neurons (Rolls, Baylis et al. 1989).  Sub-regions of inferotemporal
(IT) cortex, the putative cortical high-level pattern recognition area, were shown to be
more active during face recognition tasks (Sergent, Ohta et al. 1992).  However, by
synthesizing a novel class of stimuli and intensely training subjects to make fine
discriminations between members of this class, Gauthier and Tarr (Gauthier and Tarr
1997) make a strong case for an alternative interpretation: that it is chiefly stimulus
expertise which results in a specific syndrome of configuration sensitivity and automatic
assumption of the subordinate level in recognition, rather than the specific stimulus
category.  This may still be associated with specialized regions of IT cortex; the imaging
research of Gauthier and colleagues suggests that such localization does occur (Gauthier,
Anderson et al. 1997).

A final area of interaction between categorization levels and recognition involves
the type of representation or features used in recognition.  Structural description theories
assume that view-independent or invariant features underlie the representation of objects,
and there is evidence that  features such as the major axis of a 3-D shape are used to
make entry level categorizations.  View based theories build representations from various
local features extracted from separate learned views, and have historically been
associated with the subordinate level.  Advocates of view-based representations have
recently claimed that basic level categorization can emerge in a natural fashion from the
clustering involved in making subordinate level distinctions (Duvdevani-Bar and
Edelman 1999).  These two strategies are considered in some detail in the next section.

View-Based and Structural Description Theories: Strategies for View
Independent Recognition

A growing body of experimental evidence now suggests that performance on
recognition tasks is proportional to the distance from the nearest familiar view.  This
includes both error rate measures (Bulthoff and Edelman 1992) and recognition time
(Tarr and Pinker 1989); (Tarr, Bulthoff et al. 1997).

The structural approach derives essentially from the early proposal of Marr and
Nishihara (Marr and Nishihara 1978) that the ultimate task of object recognition is the
recovery of 3-D structural relationships from the 2-D retinal projection.  If such a
structure could be derived, then recognition of the object would be largely viewpoint
independent.  Faced with evidence that recognition is not invariant but varied linearly
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with distance from learned views for “paperclip” objects (Bulthoff and Edelman 1992),
the recognition by components (RBC) approach (Biederman and Gerhardstein 1993) was
refined to suggest that the maximal viewpoint invariance occurs when three conditions
hold:
1. Objects consist of geon-like parts. Geons are a set of simple  volumetric components

which can be configured to produce a wide range of everyday objects.
2. These parts form qualitatively distinct configurations in different objects.
3. These parts are visible over the range of viewpoints for which invariant performance

should occur.
These predictions were tested by substituting a unique geon for one of the cylinders in the
chain, which resulted in nearly invariant performance.  A subsequent study by Tarr and
colleagues (Tarr, Bulthoff et al. 1997) revealed that the single geon case is exceptional,
and generally performance falls off with distance from a learned view with three or five
geons.  This ‘paperclip with added geons’ image set from the Tarr group (henceforth
denoted here as the paperclips+ set) was selected for study in the simulations described
later in this thesis.

In contrast to the experiments just described, in my simulations the original gray
scale images are reduced to silhouettes, reducing the 3-D information available by
shading and occlusion in the raw synthetic images.  This is done chiefly to simulate
putative edge extraction mechanisms in early visual layers in an attempt to rely on form
alone.  Another recent recognition study by Hayward (Hayward 1998) found no
significant difference in viewpoint-dependent performance between silhouettes and
shaded, part-boundary-visible versions of objects, indicating that features in the boundary
contour are largely responsible for recognition and changes in performance.

Network Implementations of View Interpolation
The view based approach has been developed extensively with feed-forward

neural networks, stemming from a general strategy first described by Poggio and
Edelman (Poggio and Edelman 1990).  This strategy is essentially view interpolation by
regularization, or by normalization8 in Tarr’s terminology (Hayward and Tarr 1997).
Normalization refers to the concept that different, perhaps novel views are mapped by
some computational process to a representation derived from the trained views.  This
mapping occurs by transformation of several views of an object in a high dimensional
measurement space to a lower dimensional shape representation space.  A learning
process operating over the presented views (e.g. the adjustment of network parameters)
ensures that the transformation approaches the same point in the representation space for
all trained views.

The dimensions of the measurement space correspond to an assembly of tuned
filters.  This transformation occurs by approximating the statistics of activation and their
changes with basis function units (Poggio and Girosi 1990).  The statistics are captured
                                                  
8 I will use the term normalization;  regularization implies a certain underlying mathematical
approach is used (Poggio and Girosi 1990); a major result in the present work is to demonstrate an
alternative mathematical  approach and network realization to accomplish the normalization.
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by the selection of centers and widths of Gaussian radial basis function (RBF) units and
weight values from each unit in the basis function unit to an output summing layer.

A more elaborate version of this approach is found in the Chorus system
(Duvdevani-Bar and Edelman 1999); (Edelman 1999).  In Chorus, a set of prototype
objects is chosen as representative of a larger world of objects.  The n prototypes are
drawn from a smaller number of categories.  RBF classifiers for each of these prototype
objects are designed (trained).  With advance knowledge of all the prototype objects,
optimal views for each can be chosen which achieve the best normalization (constant
activation of the classifiers for all views) as well as maximizing inter-cluster distances in
the space of all prototypes.  Any known or novel objects applied to the measurement
units (200 tuned filters) map to  a point in the representation space whose dimensions
correspond to each prototype.  This point is signified by activation values on each
prototype unit.

Given this representation space, categorization can be performed by various
strategies.  Nearest neighbor match chooses the category of the object with minimum
distance; another, k-nearest neighbors, examines the category of the k nearest neighbors
and selects the category based on majority vote.

Critique of the feed-forward view interpolation theory
Supporters of the view based stragegy generally attribute recognition time effects

to a normalization (i.e. orientation correction) process, similar to that assumed for mental
rotation processes.  However, Chorus, a well knnown computational view-based model
with claims for biological relevance, does not actually predict any differences in reaction
time for the normalization process. The one-shot feed-forward flow through the network
is the same for any view presented to the network, whether novel or previously learned.
A previously proposed network, with a spreading activation architecture, had a more
natural interpretation for reaction time (Edelman and Weinshall 1991) .  In general, some
form of iterative computation and competitive interactions progressing toward a decision
state have been invoked to explain reaction times in connectionist models, while more
abstract theories such as the diffusion model (Ratcliff, Van Zandt et al. 1999) claim to
explain response time distributions and differences in response distributions for error and
correct responses.

Nonlinearities in response time vs. distance from familiar views have been noted
by several investigators under certain testing conditions.  Hayward and Tarr used a set of
qualitatively distinct single part geons previously used by Biederman and Gerhardstein
(Biederman and Gerhardstein 1993), but changed the experimental conditions to
eliminate possible opportunities to learn multiple views and exploit local diagnostic
features (Biederman and Gerhardstein 1993).  They designed objects and training
viewpoints such that for ± 45° rotations from the trained view, one direction resulted in
no qualitative changes, while the other produced qualitative changes, such as the
disappearance of areas of curvature.  For these conditions, they found that response time
varied between quantitative and qualitative conditions (610 vs. 650 ms) and error rates
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also varied similarly (13.5  vs. 4.5 %).  Hayward and Tarr conclude, then, that these
results contradict a normalization process based simply on magnitude of rotation.

 The source of the well-established reaction time effect is arguably an artifact of
some matching process of stored codes and codes formed in the early visual pathways,
possibly involving synchronization processes.  Based on these nonlinearities, Edelman
has argued that the mental rotation hypothesis has weak support based on the evidence
mentioned above, and that the disappearance or reduction of delay with practice
represents a faster path to recognition, not an increase in the rotation rate.

The subject of visual search and attention has to date been given relatively little
attention in the literature on view-based object recognition, but problems with the feed-
forward recognition model are also apparent in this context.  It is easy for humans to
search a visual scene for a familiar object and to know that it is not there, but feed-
forward models do not readily address this case.  Extensive experiments by Miyashita
indicate a repeatable, stimulus-specific response in anterior ventral IT cortex during a 16
second delay interval in a delayed match to sample task (Miyashita and Chang 1988).
The stimulus is not present during this interval, and the response is statistically
distinguished from the period when the stimulus is present.  This is interpreted by
Miyashita as a neural correlate of short-term memory for the particular shape.  A feed-
forward model considers the network weights to be the essence of memory, and predicts
no stimulus specific response during a delay period.

Single unit studies addressing attention and search aspects of object recognition
in IT cortex have led to considerably different interpretations of the functioning of IT
than those cited by Edelman and Tarr.  These are described in more detail in a later
section, but for now I note the findings of Eskandar et al. (Eskandar, Optican et al. 1992)
that the best prediction of the stimulus from spike trains results from interpreting the
trains as a multiplication of a target code and the incoming stimulus code during a search
process.  This could be interpreted as an intermediate computation (a weighting process)
in an RBF-style computation leading to activation in a certain area.  Alternatively, it
might be interpreted as a cooperative synchronization process, also ultimately resulting in
activation in a few areas which are structurally and dynamically suited to synchronize
with the stored memory representation.  The latter type of computation is the focus of the
theory and experiments here.

A final issue I raise regarding the neural correlates of psychological phenomena
was pointed out by Tsuda (Tsuda 1992), that of the difficulty of breaking the life of an
organism into clean epochs of learning and recognition.  It seems likely that normal
exploratory behavior involves both of these activities proceeding in parallel, or at least
that a system is poised to be able to rapidly switch from one to the other as the dominant
mode.  Dynamical models involving continual bifurcation (dynamical parameter
changes), but more explicitly recast in terms of synchronization dynamics, may be a more
appropriate architecture for combining learning and recognition in a natural way (Skarda
and Freeman 1987).  The approach in this thesis, while consistent with oscillatory
representations and synchronization-based computational strategies, does not yet step up
to the challenge of dynamic shifting between learning and recognition modes.
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In summary, while view-based recognition has deservedly emerged as a leading
computational theory of object recognition and representation, several issues have not
been addressed: Primed search (search for an object held in short term memory in a
visual scene),  variance in reaction times, and the longer time scale contextual shifts
between learning and recognition.  While these issues are not addressed or resolved
theoretically or experimentally by the present work, we will return to these subjects in
discussing the relative merits of three recognition approaches with claims to biological
relevance.

PERSPECTIVES FROM COMPUTER VISION

Most contemporary work in the psychology of vision and perception uses
computational and signal processing concepts.  The converse is not true, in that many
algorithms proposed for recognition have no ready interpretation in neural network terms.
In reviewing developments in computer vision most relevant to the present work, I will
first focus on a few classical dilemmas related to object recognition.  I then review some
recent work claiming to be biologically motivated, and finally mention some recent
algorithmic approaches which share aspects of the computational style.  In spite of the
emphasis here on dynamics and neuroscience, the synchronization opponent lattice
network also has something in common with recent trends in computer vision including
nonlinear diffusion, deformation, and feature histogram methods; thus it  may be
improved by drawing on continued progress in those areas.

One algorithm (geometric hashing) is presented which may seem a bit out of
context with the rest of the discussion.  I include it because it handles two problems –
invariance for discontinuous point sets and embedding of objects in a scene – which I do
not believe can be handled by any methods discussed here, including my own.

Classical Pattern Recognition in the Image Domain
Some attempt must be made to situate the present work in relation to the long and

diverse history of image recognition methods.  To concisely present the history and
recent trends of such a vast field is challenging; I will emphasize the areas of
transformation and multiple scales that characterize recent geometric methods, and will
stress the way in which transformative methods can blur traditional distinctions between
structural and syntactic approaches and scale issues.

Several surveys on image processing methods identify the major classical
methods as either statistical or structural (Freeman 1985); (Leedham 1991); (Del Bimbo
1999).  Del Bimbo describes more recent approaches as “shape through transformation”.
Thus classical recognition methods – both statistical and structural (or syntactic) – are
relatively passive, in that they do not modify the base image.  They merely subject it to
some interpretive framework, such as a particular feature set.  In contrast, my method
(and others I will survey) modifies the image in some way prior to measurement on a
modified image, or possibly measurements over a sequence of modifications.
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Classical Methods and Dilemmas

Statistical Methods
In statistical approaches, pattern data is represented by a feature vector which is

used as input to some classifier or decision process. Features may characterize global
form (area, elongatedness, major axis orientation) or local elements (corners,
characteristic points).  Shapes are viewed as points in shape feature space.  For effective
recognition, the requirement is to choose features such that patterns of the same class are
tightly clustered in N dimensional space corresponding to N features, and patterns of
different classes are in other tightly clustered regions well separated from each other
(Duda and Hart 1973).

A key problem in statistical methods is the reduction of the dimensionality of the
feature vector.  This may be accomplished by a feature selection process, in which low
significance features are deleted, or by a feature space transformation method, or both.
Classically, a particular class was represented by a template with matching against
templates; this matching was considered to be intractable for large numbers of objects
due to the need to compare with inputs which have been rotated, scaled, partly occluded,
non-rigidly transformed, or presented under varying lighting conditions.  Recent schemes
employing normalization (the RBF networks underlying Chorus) and interactions among
multiple well chosen prototypes, or the sophisticated weighting of a large feature set (Mel
1997) have overcome this to some extent.

Another approach to the use of features is to create a transformed representation
space on the basis of correlations among the dimensions to enhance cluster tightness and
inter-class separation.  Feed-forward supervised networks, or competitive networks such
as self organizing maps can use feature vectors as input, and via training transform the
features into activation levels in a set of network elements corresponding to classes.

Decision methods may generally be classed as non-parametric or parametric
(Leedham 1991).  Non-parametric methods include linear discriminant functions,
minimum distance classifiers, and nearest neighbor classifiers.

The most widely used parametric decision rule is the Bayes classifier.  The main
distinction from non-parametric methods is that the decision rule involves class
conditional densities and a priori probabilities of occurrence of classes.  Bayesian
classifiers are particularly important with large object databases, where setting classifier
decision boundaries properly and defining the optimal feature set are crucial for good
recognition performances.

The description of statistical pattern recognition methods presented here thus far
has been in general terms, applicable to any data set.  Recognition of object shapes in a
statistical framework poses additional problems unique to this class of data.  Non-rigid
objects are composed of parts which can assume different poses – human and animal
figures are good examples.

The changing projections of three dimensional objects seen from different
viewpoints constitute the stimulus identity problem.  Different features and feature
conjunctions will be present in each view.  This problem has been addressed by
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geometric methods seeking invariants (treated in the next section), or by neural networks
exploiting regularities in the changing distributions of raw features (the Chorus RBF
ensemble approach).  Recently, however, progress on stimulus equivalence within a “raw
feature” paradigm has been demonstrated, by careful design.

 Mel, describing the design goals for a recent high performance feature based
system (Mel 1997), notes the following expectations on feature sets to overcome these
problems:

1 .  Features should be large in number; sparsely occupied high dimensional
representations are most robust to noise.

2. Features should be useful; they may be sensitive to object quality (occlusion, poor
lighting) but should be robust in the face of pose or configuration changes.

3. They should be dominated by spatially local features; this is particularly important
for non-rigid objects , which preserve local but not global structure in any
particular view.

4 . They should be driven by multiple visual cues to maximize discrimination,
represent diverse objects, and buffer representation against degradation which
affects different cues (feature channels) more or less severely.

The use of these principles led to the creation of his SEEMORE system, which
achieves recognition rates above 90% in a 100 object world, even for scrambled
images.  The high performance achieved with these first order9 feature channels is
interpreted by Mel to support the idea that a simple feature space is all that is needed
and attempts to extract structural information or otherwise “bind” collections of
features may be unnecessary for biological systems.  It is easy, however, to construct
images with identical first order statistics which will fool such a system but are
readily distinguished by humans.  It seems likely that some of SEEMORE’s
recognition success depends on diversity in first order statistics of the object world,
along with limited use of second order statistics for some feature channels.

Structural or Syntactic Methods
The other major family of classic pattern recognition approaches, chiefly

developed for image or shape processing applications are structural or syntactic methods
(Pavlidis 1977).  Here, the input image must first be segmented into primitives; the
primitives must be recognized, and spatial or topological relationships between these
primitives extracted.  Finally, with this information, a syntactic analysis and classification
on that basis can proceed. None of these problems are trivial.

Within computer vision, structural methods based on raw image data have been
largely superseded by related methods which capture structural information implicitly by
multi-scale representations or by deformations.  In the psychological examination of
human vision, structural approaches still command a good deal of support.  In part, this is
                                                  
9 First order features implies that no information on the spatial proximity of other features is
present.  Second order features would capture adjacencies of feature pairs at one or more scales,
with increasing high order features preserving this trend.
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due to the fact that task specific or language mediated descriptions of objects offer
evidence that compositional representations are used.  Statistical approaches, and feed-
forward neural networks have been problematic in regard to this issue.

Compositionality is essentially the separability of the components of a composite
representation, i.e. the ability to use or talk about them independently after the formation
of that representation (Van Gelder 1990).  Recurrent networks have been demonstrated to
exhibit a so called functional compositionality,  in which tree structures can be
represented and their constituent parts derived (Pollack 1990).

Some Geometric Methods for Shape Description
Finding a representation of shapes which is invariant to viewpoint has been

approached from a variety of methods which are difficult to justify biologically.
However there is evidence that classes of stimuli, such as point sets in a regular
geometrical arrangement, are recognized even in a noisy background (Uttal 1988).  It is
unlikely that other methods discussed here involving local receptive-field computations
(e.g. SEEMORE) would handle this situation well. The first geometric method to be
examined deals explicitly with point sets and is designed to work in scene analysis.

Geometric Hashing
Geometric hashing (Wolfson and Yehezkel 1992) was proposed as a means of

performing model based recognition in scenes, with robustness to partial occlusion and to
transformations in the plane.  This is accomplished by considering an object as a point
set, and by remapping coordinates of every point in terms of all possible triplets of non-
collinear points.  For four points A,B,C,D ∈  R2, affine invariant coordinates of D are

coordinates with respect to axes defined by AB and AC .  Affine transformations
(translation, scaling or rotation in the plane) will produce a new set of points

′ ′ ′ ′A B C D, , , ;  the coordinates of ′D  in the ′ ′ ′A B C, ,  coordinate system are unchanged.
First, signatures are generated from interest points  on one or several views of an object.
Interest points are endpoints or intersections of segments extracted by some edge
extraction procedure.  During scene analysis, interest points are selected and processed by
a similar computation. The signature generation procedure is outlined here:

procedure signature_generation
   for each model object
 extract m interest points for the object

for each ordered non-collinear triplet (affine basis) do
a) compute coordinates of all m-3 model points in the affine  coordinate
frame for the current basis;
b) use the coordinate as an address to a hash table;
c) record in the table entry a pair {model, basis} for which the
coordinate was obtained

           end for
   end for
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end procedure

The complexity of signature generation is of order m4 
 per model.  The creation of

the hash table is viewed as a learning process, in which a memory is formed
relative to different foci of attention.

The corresponding matching procedure is then:

procedure match_model_in_scene
a) extract n interest points from scene
b) choose arbitrary ordered triplet of non-collinear points, compute scene
points referenced to this triplet as affine basis.
c) for each such coordinate

check the appropriate entry in hash table;
for every {model, basis} pair , tally a vote for the model and affine
basis.

   endfor
d) If a certain {model, basis} pair scores many votes, decide this is the
object.
e) Consider all {triplet, image point} pairs which voted for winning
{model, basis} pair
f)  find the affine transformation giving the best least-squares match
between corresponding point pair views.
g) transform the whole low level representation of model according to affine
transform and verify it vs. the scene.

end procedure

Multiresolution Methods
One major problem with feature vector classifiers is that the relevant features of

an object tend to vary with scale in a way which is unknown a priori.  Overcoming this
defect is a major goal of scale space approaches, such as geometry-driven diffusion.
While such methods can adaptively tune feature representations for shapes with detail at
many scales, the  mapping of the resultant curve family to a representative feature vector
can be computationally expensive, and some of the features advocated are difficult to
discover (i.e. the detection of singularities in evolved curves).  Wavelet decompositions
also perform well in terms of capturing details at multiple spatial scales, but early
formulations had problems with translational and rotational invariance; newer methods,
such as steerable pyramids (Simoncelli, Freeman et al. 1992) claim to overcome these
limitations.
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Transformational or Deformation Methods
Scale spaces are a generic term for families of derived images or shape which

attempt to capture aspects of shapes at various spatial frequency bands.  In smoothing
approaches to scale space shape characterization, a gray-scale luminance image is subject
to a smoothing evolution by a family of Gaussian kernels with increasing neighborhood
size.  Alternatively, in a more geometrical, abstract formulation, a curve may be evolved
by displacement at each point by moving in the direction of the normal vector by an
amount proportional to the curvature at that point.  Each evolved shape in this iterative
process can be characterized by some feature.  Zero crossings of derivatives, inflection
points, curvature extrema, and symmetry axes have been used as features (Kimia and
Siddiqi 1994).  The set of features extracted after the evolution process captures the shape
characteristics at a variety of scales.  Extrema that survive larger smoothing extents may
be considered more significant, and might be weighted more heavily during feature based
distance computations.

Fig. 2.   Example of curve evolution by geometry -driven diffusion.
Smoothing occurs by displacing each point from the original curve
proportional to the local curvature.  The series of curves generated serve
as the basis for characterization of the original shape.  From Kimia, B. B.
and K. Siddiqi (1994). Geometric heat equation and nonlinear diffusion
of shapes and images. Computer Vision and Pattern Recognition, Seattle,
IEEE Computer Society. Used with permission, IEEE.

The literature on curve evolution is primarily concerned with theoretical
problems and extensions and short on applied comparisons to other approaches.  Curve
evolution scale space methods are argued to give good qualitative descriptions of shape,
but are rather expensive to compute and do not allow easy reconstruction in contrast to
decomposition methods (e.g. wavelet transforms) which also capture information at
various spatial scales.  The listing of inflection points at each scale or iteration involves
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difficulties in the data representation and efficient computation of a similarity function,
since the number of inflection points for each shape is not constant.  In addition, if the
shapes to be characterized are not simple solids bounded by a closed curve, missing
interior components would need to have separate evolutions and feature vectors, possibly
leading to ambiguities, singularity problems or problems handling an extended set of
vectors for each component when applying a similarity function.

Many of these defects have been reduced by a closely related, more recent
approach utilizing shocks (Tek and Kimia 1999).  Shocks are the sites where diffusion
wavefronts from an object outline collide internally (on the medial axis of a shape), and
externally as well.  Resulting shock graphs and their grammars have been used to
describe shapes, with similarity functions on the resulting graphs defined.  The
representation  has been proven sufficient to reconstruct the local shape from the medial
axis, tangents, velocity and acceleration of shocks (Giblin and Kimia 1999) .  Medial axis
representations are normally sensitive to deformations in the outline, but methods have
been developed to distinguish stable from unstable shocks to ameliorate this problem
(Giblin and Kimia 1999).

While the neural mechanisms which might implement such transformations are
rather opaque, there is evidence that axis representations or skeletons are computed in
some fashion and influence the response of cells in primary visual cortex (Kovacs and
Julesz 1994); (Lee, D. et al. 1998).

Morphological Scale Space
A related approach relying on nonlinear transformation of the image at multiple

scales is designated morphological scale space (Korn, Sidiropouls et al. 1996).  In this
approach, morphological operators of increasing scale are applied to the original image or
curve, again resulting in a family of transformed images.  A pattern spectrum has been
proposed to characterize such an image family (Maragos 1988).  The spectrum consists of
the accumulation of successive differences in area between a pattern and its successor as
opening and closing morphological operators of increasing scale are applied.  Similarity
functions can be applied to the resulting histogram.

Comparison of Computational Methods and Psychological Responses
The application of geometric algorithms for shape similarity to the problem of

image retrieval in multimedia databases has motivated studies of how  well a particular
algorithm corresponds to human judgements on the same task.   One such study with a
large and diverse set of images (Scasseleti, Alexopoulos et al. 1994) found that each of
several algorithms performed very well for certain target images, but poorly on others.
Turning angle, the most robust of the algorithms across the images, was the best match to
human preferences on only 8 of the 20 target images used.  Turning angle methods
require a search or fitting procedure to insure the best alignment between the feataure
vectors prior to computing the distance function;  also, such raw curvature descriptions
are sensitive to scale.  Descriptions based on sets of inflection points, like the sign of
curvature approach, reduce scale sensitivity in comparison with  raw curvature.
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This finding of an apparent psychological primacy of local contour based
measures corroborates the finding of Hayward already mentioned (Hayward 1998) that
contours of binary images (silhouettes) are recognized with comparable performance to
gray scale images, and that contour (or some transformation of contour) is the major
information source for human object recognition and similarity.

Summary: Situating the Soca Approach  in Computer Vision
 The framework and implementation I develop here draws from many classical

computer vision concepts, as well as the image transformation, and representation space
concept introduced earlier in the context of the Chorus system.  Statistics are used to
match histogram templates; currently a nearest neighbor decision function is used.  These
statistics are over an abstract representation space which is designed to achieve the goals
of within-class tightness and inter-class separation, where each class is a depth rotation-
invariant description of a three dimensional object.  The rotation invariance is formed by
a transformation method involving diffusion and blurring as part of its mechanism, like
the heat equation deformation methods.  These scale space methods typically avoid
creating new spatial structure; in contrast,  the procedure described here is completely
dependent on creating fine structure, and on cooperative interactions derived from those
structures.

A fundamental aspect of the Soca network implementation is that there is local,
receptive field like processing, with a diffusive “spreading of activity” character.
However, this activation is not to be understood as a monotonic variable associated with
detection of some feature.  In image processing terms, the process can be considered as a
nonlinear filter with feedback, or iterative nonlinear convolution.  This combination of
diffusion and highly nonlinear (non-monotonic) transfer function forms a representation
determined by both local features (e.g. curvature and corner elements) and medium-scale
structural relationships.  The scale of interactions is determined by a window proportional
to the number of network iterations used to generate a representation meeting some
criteria.  A particular juxtaposition of local curvature changes may, with appropriate
network parameters,  result in a unique distribution or histogram in the representation
space.  This type of process is, to my knowledge, a unique approach to combining local
feature and structural information; thus it represents one of the main contributions of the
thesis.

Forming such a representation - one that captures the co-occurrence of local
features - is a hotly debated subject in neuroscience, referred to as the binding problem.
While the problem is typically presented in terms of separate channels (such as color and
shape), the situation of decomposing an image or outline into a set of orientation
frequency detectors presents the same difficulty.  Opinion on the subject ranges from
claims on the neural correlates of binding to assertions that there is no problem.  This will
be discussed in some detail in a subsequent section on neuroscience.
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PERSPECTIVES FROM THEORETICAL COMPUTER SCIENCE

Computer science has certain perspectives and emphases that result in a
characteristic way of framing the problems of similarity and recognition.  In this section,
I focus on two such perspectives.  First, any spatial or temporal pattern can ultimately be
represented as a string in some alphabet.  One traditional theoretical approach is to
consider families of such strings as a formal language, and to frame recognition problems
in terms of recognizing a language.  This way of formulating recognition problems is also
relevant to the present thesis because it allows the tools and language of symbolic
dynamics to be applied.  Symbolic dynamics will be taken up in more detail in the section
on dynamics and representation, and in theoretical discussions on proving the
representation-forming capability of Soca style transformations.

Dynamical Recognizers and Computational Mechanics
The problem of learning to accept positive exemplars of a language while

rejecting negative exemplars is known as language induction.  Classical machine learning
approaches to this problem construct a finite state automaton to affect recognition.
Formally, a finite state recognizer is a quadruple { , , , }Q FΣ δ , where Q  is a set of states
(with q0  denoting the initial state), Σ is some finite alphabet, δ is a transition function
mapping Q ×∑⇒  Q, and F ⊂  Q is a set of final or accepting states.  A string of tokens
from alphabet Σ is accepted by the recognizers if, starting from initial state q0 the
sequence of state transitions indicated by the tokens in the string ends up in one of the
final states in subset F.

A pioneering attempt to formulate the language induction problem as a
dynamical system, in the form of a recurrent neural network, was the study of   Pollack
(Pollack 1991).  The dynamical recognizer is a quadruple {Z,Σ,Ω,G}, where Z ⊂  Rk is a
state space; zk(0) is the initial condition.  Σ is the input “alphabet”, where a particular
closed interval in Z corresponds to each element in this alphabet.   (This correspondence
between intervals of state-space and symbols is a cornerstone of symbolic dynamics,
which will be mentioned again later).  Ω is the dynamic, a sequence of transformations
ωI:Z→Z (one for each token ) with an associated set of dynamical parameters; these
parameters are fixed for a particular recognizer during the induction (training ) process.
G(Z) →{0,1} is the decision function which maps one or more states in the sequence
produced by the dynamic to an accept/ reject decision.  In Pollack’s work, only the final
state and token are used in the decision function.  Within this general framework, the
dynamics and decision function are normally much weaker in computational power than
a Turning machine.  Pollack notes that G may be generalized to a graded function
indicating “fuzzy” acceptance, or could return a more complex categorization or
representation.

The Soca network and recognition method I describe later is quite consistent with
this extended dynamical recognizer framework.  A key difference is that the Soca net
operates on an image “string” in parallel (thus the state space has higher dimensionality
RN, where N is the number of pixels or sampled image elements), and the tokens are used
only once as the initial state.  Such a parallel recognizer framework for picture languages
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with constrained states and transformations was studied in a series of papers by
Rosenfeld (Rosenfeld 1979).  In Rosenfeld’s formulation, the transition function at each
pixel is now a function of several tokens in some spatial neighborhood; this is the cellular
automata formalism, which is described in the dynamics section later. The decision
function is necessarily modified by this larger state space. Rosenfeld proposed several
possibilities:
1. every spatial element reaches an accepting state
2. any element reaches an accepting state
3. one particular spatial element reaches an accepting state.

In the Soca network and recognition strategy, my approach is to form a metric
representation space, but that space consists of statistics measured instantaneously during
a high dimensional, parallel dynamics, rather than a direct map of the input features or
measurement space.  These statistics naturally support an acceptance function; simply
define some threshold distance for each classifier, and accept an object as an instance of
language L if it satisfies this distance test.  The distances might vary by class, depending
on the cluster density of that class in the representation space.  Another contribution of
the thesis, then, is adding another type of decision function to the repertoire defined by
Rosenfeld.  While such a distance threshold decision function is common in statistical
pattern recognition, it is novel for processes operating with local dynamics.

Other researchers have recently been concerned with decision functions over
spatial patterns processed by cellular automata, a form of spatially-extended dynamical
systems closely related to those used in the present work (Mitchell, Hraber et al. 1993);
(Mitchell, Crutchfield et al. 1996); (Hordijk, Crutchfield et al. 1998).  Genetic algorithms
were used to generate and test particular one dimensional cellular automata (CA) which
decide, for example, whether a random initial condition has majority ones or zeros.  The
group then examines space-time plots (i.e. plots of successive iterations of a 1-D spatial
array) of the resulting successful computations and develops an explanatory framework
based on physical metaphors; this framework is designated by this group as
Computational Mechanics.

Computational Mechanics seeks to reconstruct the computations embedded in
space-time behavior in terms of regular domains, particles, and particle interactions.
Regular domains are regions visible in space-time plots consisting of words (spatial
configurations) in the same regular language, i.e. regions that are computationally
homogeneous.  Particles are localized boundaries between such domains; they serve as
information carriers.  Collisions between particles are the loci of information processing.
This processing can be conceived in terms of operators such as decay of one particle to
many, reactions (state transitions between language domains at collision sites), and
annihilations (the disappearance of an interface as one language domain dominates future
spatial evolution at a collision site).  The computational strategy can then be expressed in
the more concise language of particles and their interactions, substituting for a more
verbose description in the language of CA rule lookup tables and raw spatial
configurations.

While the computational mechanics group does not explicitly state this, the
decision function in the majority task can be considered a type of synchronization – until
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all cells reach the same language domain (which, in this simple case, is all 0 or 1) the
system is undecided.  Consider a k-block as an adjacent set of k cells, with the entire CA
consisting of overlapping sets of such k-blocks.  Each k-block of cells in this automaton
is defined by the state transition graph of a finite state automaton (FSA) with k states.  As
the automata evolves, at each time step we can label each state with the fraction of k-
blocks which currently hold that value (we say they occupy the state).  Synchronization
in this context implies that over time, the occupancy statistics of the graph converge to
sharp peaks, or an unchanging sequence of sharp peaks; particular sub-graphs of the
state-transition graph are active, while others become blocked, as their predecessor states
become unreachable within increasing spatial “territories”.

Note that particles have a characteristic velocity, and for certain kinds of
terminating conditions (such as a particular site or region reaching a value in a set of
accepting states F) one possibility for variance in the temporal processing is dependence
on the emergent particle velocities on initial configurations in a family of inputs, when a
“synchronization” decision function is reached.

Summary: Situating the Soca Approach in Computer Science
In summary, the Soca system extends the tradition of dynamical language

recognizers over spatial configurations, and attempts to unify this approach with
traditional metric representation space of statistical pattern recognition.  Similar to the
work of Mitchell, Crutchfield, and their colleagues, the approach taken here is to discover
successful computations within a particular family of spatially distributed computations,
then analyze the result.  I have generally proceeded with more constraints on the search
process, guided by general principles of pattern recognition.

The decision functions used here also involve synchronization in the sense
defined above, but the synchronization is partial and not defined to contiguous regions as
in the regular domains.  Another key distinction of the Soca work from the research in the
computational mechanics group is that the present search strategy focuses on solving the
decision problem within a fixed number of iterations, rather than an open ended
synchronization process.  This led to the hypothesis that dynamical changes  (non-
stationary parameters or rules) might lead to superior performance relative to constant
dynamics, by forcing more rapid synchronization.


